1,092 research outputs found
The (B) conjecture for uniform measures in the plane
We prove that for any two centrally-symmetric convex shapes , the function is log-concave. This
extends a result of Cordero-Erausquin, Fradelizi and Maurey in the two
dimensional case. Possible relaxations of the condition of symmetry are
discussed.Comment: 10 page
Comparing theories: the dynamics of changing vocabulary. A case-study in relativity theory
There are several first-order logic (FOL) axiomatizations of special
relativity theory in the literature, all looking essentially different but
claiming to axiomatize the same physical theory. In this paper, we elaborate a
comparison, in the framework of mathematical logic, between these FOL theories
for special relativity. For this comparison, we use a version of mathematical
definability theory in which new entities can also be defined besides new
relations over already available entities. In particular, we build an
interpretation of the reference-frame oriented theory SpecRel into the
observationally oriented Signalling theory of James Ax. This interpretation
provides SpecRel with an operational/experimental semantics. Then we make
precise, "quantitative" comparisons between these two theories via using the
notion of definitional equivalence. This is an application of logic to the
philosophy of science and physics in the spirit of Johan van Benthem's work.Comment: 27 pages, 8 figures. To appear in Springer Book series Trends in
Logi
Static Analysis of Run-Time Errors in Embedded Real-Time Parallel C Programs
We present a static analysis by Abstract Interpretation to check for run-time
errors in parallel and multi-threaded C programs. Following our work on
Astr\'ee, we focus on embedded critical programs without recursion nor dynamic
memory allocation, but extend the analysis to a static set of threads
communicating implicitly through a shared memory and explicitly using a finite
set of mutual exclusion locks, and scheduled according to a real-time
scheduling policy and fixed priorities. Our method is thread-modular. It is
based on a slightly modified non-parallel analysis that, when analyzing a
thread, applies and enriches an abstract set of thread interferences. An
iterator then re-analyzes each thread in turn until interferences stabilize. We
prove the soundness of our method with respect to the sequential consistency
semantics, but also with respect to a reasonable weakly consistent memory
semantics. We also show how to take into account mutual exclusion and thread
priorities through a partitioning over an abstraction of the scheduler state.
We present preliminary experimental results analyzing an industrial program
with our prototype, Th\'es\'ee, and demonstrate the scalability of our
approach
Uniform Substitution for Differential Game Logic
This paper presents a uniform substitution calculus for differential game
logic (dGL). Church's uniform substitutions substitute a term or formula for a
function or predicate symbol everywhere. After generalizing them to
differential game logic and allowing for the substitution of hybrid games for
game symbols, uniform substitutions make it possible to only use axioms instead
of axiom schemata, thereby substantially simplifying implementations. Instead
of subtle schema variables and soundness-critical side conditions on the
occurrence patterns of logical variables to restrict infinitely many axiom
schema instances to sound ones, the resulting axiomatization adopts only a
finite number of ordinary dGL formulas as axioms, which uniform substitutions
instantiate soundly. This paper proves soundness and completeness of uniform
substitutions for the monotone modal logic dGL. The resulting axiomatization
admits a straightforward modular implementation of dGL in theorem provers
Connections between Relation Algebras and Cylindric Algebras
Abstract. We give an informal description of a recursive representability-preserving reduction of relation algebras to cylindric algebras.
A Proof of Tarski’s Fixed Point Theorem by Application of Galois Connections
Two examples of Galois connections and their dual forms are considered. One
of them is applied to formulate a criterion when a given subset of a complete lattice forms
a complete lattice. The second, closely related to the first, is used to prove in a short way
the Knaster-Tarski’s fixed point theore
Zone Diagrams in Euclidean Spaces and in Other Normed Spaces
Zone diagram is a variation on the classical concept of a Voronoi diagram.
Given n sites in a metric space that compete for territory, the zone diagram is
an equilibrium state in the competition. Formally it is defined as a fixed
point of a certain "dominance" map.
Asano, Matousek, and Tokuyama proved the existence and uniqueness of a zone
diagram for point sites in Euclidean plane, and Reem and Reich showed existence
for two arbitrary sites in an arbitrary metric space. We establish existence
and uniqueness for n disjoint compact sites in a Euclidean space of arbitrary
(finite) dimension, and more generally, in a finite-dimensional normed space
with a smooth and rotund norm. The proof is considerably simpler than that of
Asano et al. We also provide an example of non-uniqueness for a norm that is
rotund but not smooth. Finally, we prove existence and uniqueness for two point
sites in the plane with a smooth (but not necessarily rotund) norm.Comment: Title page + 16 pages, 20 figure
Algebraic Properties of Valued Constraint Satisfaction Problem
The paper presents an algebraic framework for optimization problems
expressible as Valued Constraint Satisfaction Problems. Our results generalize
the algebraic framework for the decision version (CSPs) provided by Bulatov et
al. [SICOMP 2005]. We introduce the notions of weighted algebras and varieties
and use the Galois connection due to Cohen et al. [SICOMP 2013] to link VCSP
languages to weighted algebras. We show that the difficulty of VCSP depends
only on the weighted variety generated by the associated weighted algebra.
Paralleling the results for CSPs we exhibit a reduction to cores and rigid
cores which allows us to focus on idempotent weighted varieties. Further, we
propose an analogue of the Algebraic CSP Dichotomy Conjecture; prove the
hardness direction and verify that it agrees with known results for VCSPs on
two-element sets [Cohen et al. 2006], finite-valued VCSPs [Thapper and Zivny
2013] and conservative VCSPs [Kolmogorov and Zivny 2013].Comment: arXiv admin note: text overlap with arXiv:1207.6692 by other author
Decidability Results for Multi-objective Stochastic Games
We study stochastic two-player turn-based games in which the objective of one
player is to ensure several infinite-horizon total reward objectives, while the
other player attempts to spoil at least one of the objectives. The games have
previously been shown not to be determined, and an approximation algorithm for
computing a Pareto curve has been given. The major drawback of the existing
algorithm is that it needs to compute Pareto curves for finite horizon
objectives (for increasing length of the horizon), and the size of these Pareto
curves can grow unboundedly, even when the infinite-horizon Pareto curve is
small. By adapting existing results, we first give an algorithm that computes
the Pareto curve for determined games. Then, as the main result of the paper,
we show that for the natural class of stopping games and when there are two
reward objectives, the problem of deciding whether a player can ensure
satisfaction of the objectives with given thresholds is decidable. The result
relies on intricate and novel proof which shows that the Pareto curves contain
only finitely many points. As a consequence, we get that the two-objective
discounted-reward problem for unrestricted class of stochastic games is
decidable.Comment: 35 page
- …