364 research outputs found

    Dynamic reorganization of the middle fusiform gyrus: long-term bird expertise predicts decreased face selectivity

    Get PDF
    What is the functional relationship between face-selective and expertise-predicated object-selective regions in the human middle fusiform gyrus? In two separate fMRI experiments, superior behaviorally-measured bird expertise predicts both higher middle fusiform gyrus selectivity for birds and, concomitantly, lower selectivity for faces. This finding suggests a long-term dynamic reorganization of the neural mechanisms underlying the visual recognition of faces and non-face

    Quantifying the Roles of Visual, Linguistic, and Visual-Linguistic Complexity in Verb Acquisition

    Full text link
    Children typically learn the meanings of nouns earlier than the meanings of verbs. However, it is unclear whether this asymmetry is a result of complexity in the visual structure of categories in the world to which language refers, the structure of language itself, or the interplay between the two sources of information. We quantitatively test these three hypotheses regarding early verb learning by employing visual and linguistic representations of words sourced from large-scale pre-trained artificial neural networks. Examining the structure of both visual and linguistic embedding spaces, we find, first, that the representation of verbs is generally more variable and less discriminable within domain than the representation of nouns. Second, we find that if only one learning instance per category is available, visual and linguistic representations are less well aligned in the verb system than in the noun system. However, in parallel with the course of human language development, if multiple learning instances per category are available, visual and linguistic representations become almost as well aligned in the verb system as in the noun system. Third, we compare the relative contributions of factors that may predict learning difficulty for individual words. A regression analysis reveals that visual variability is the strongest factor that internally drives verb learning, followed by visual-linguistic alignment and linguistic variability. Based on these results, we conclude that verb acquisition is influenced by all three sources of complexity, but that the variability of visual structure poses the most significant challenge for verb learning

    How are Three-Deminsional Objects Represented in the Brain?

    Get PDF
    We discuss a variety of object recognition experiments in which human subjects were presented with realistically rendered images of computer-generated three-dimensional objects, with tight control over stimulus shape, surface properties, illumination, and viewpoint, as well as subjects' prior exposure to the stimulus objects. In all experiments recognition performance was: (1) consistently viewpoint dependent; (2) only partially aided by binocular stereo and other depth information, (3) specific to viewpoints that were familiar; (4) systematically disrupted by rotation in depth more than by deforming the two-dimensional images of the stimuli. These results are consistent with recently advanced computational theories of recognition based on view interpolation

    Open-Ended Instructable Embodied Agents with Memory-Augmented Large Language Models

    Full text link
    Pre-trained and frozen large language models (LLMs) can effectively map simple scene rearrangement instructions to programs over a robot's visuomotor functions through appropriate few-shot example prompting. To parse open-domain natural language and adapt to a user's idiosyncratic procedures, not known during prompt engineering time, fixed prompts fall short. In this paper, we introduce HELPER, an embodied agent equipped with an external memory of language-program pairs that parses free-form human-robot dialogue into action programs through retrieval-augmented LLM prompting: relevant memories are retrieved based on the current dialogue, instruction, correction, or VLM description, and used as in-context prompt examples for LLM querying. The memory is expanded during deployment to include pairs of user's language and action plans, to assist future inferences and personalize them to the user's language and routines. HELPER sets a new state-of-the-art in the TEACh benchmark in both Execution from Dialog History (EDH) and Trajectory from Dialogue (TfD), with a 1.7x improvement over the previous state-of-the-art for TfD. Our models, code, and video results can be found in our project's website: https://helper-agent-llm.github.io.Comment: Project page with code & videos: https://helper-agent-llm.github.i

    Micro-Valences: Perceiving Affective Valence in Everyday Objects

    Get PDF
    Perceiving the affective valence of objects influences how we think about and react to the world around us. Conversely, the speed and quality with which we visually recognize objects in a visual scene can vary dramatically depending on that scene’s affective content. Although typical visual scenes contain mostly “everyday” objects, the affect perception in visual objects has been studied using somewhat atypical stimuli with strong affective valences (e.g., guns or roses). Here we explore whether affective valence must be strong or overt to exert an effect on our visual perception. We conclude that everyday objects carry subtle affective valences – “micro-valences” – which are intrinsic to their perceptual representation

    Brain Diffusion for Visual Exploration: Cortical Discovery using Large Scale Generative Models

    Full text link
    A long standing goal in neuroscience has been to elucidate the functional organization of the brain. Within higher visual cortex, functional accounts have remained relatively coarse, focusing on regions of interest (ROIs) and taking the form of selectivity for broad categories such as faces, places, bodies, food, or words. Because the identification of such ROIs has typically relied on manually assembled stimulus sets consisting of isolated objects in non-ecological contexts, exploring functional organization without robust a priori hypotheses has been challenging. To overcome these limitations, we introduce a data-driven approach in which we synthesize images predicted to activate a given brain region using paired natural images and fMRI recordings, bypassing the need for category-specific stimuli. Our approach -- Brain Diffusion for Visual Exploration ("BrainDiVE") -- builds on recent generative methods by combining large-scale diffusion models with brain-guided image synthesis. Validating our method, we demonstrate the ability to synthesize preferred images with appropriate semantic specificity for well-characterized category-selective ROIs. We then show that BrainDiVE can characterize differences between ROIs selective for the same high-level category. Finally we identify novel functional subdivisions within these ROIs, validated with behavioral data. These results advance our understanding of the fine-grained functional organization of human visual cortex, and provide well-specified constraints for further examination of cortical organization using hypothesis-driven methods.Comment: NeurIPS 2023 (Oral). Project page: https://www.cs.cmu.edu/~afluo/BrainDiVE

    BrainSCUBA: Fine-Grained Natural Language Captions of Visual Cortex Selectivity

    Full text link
    Understanding the functional organization of higher visual cortex is a central focus in neuroscience. Past studies have primarily mapped the visual and semantic selectivity of neural populations using hand-selected stimuli, which may potentially bias results towards pre-existing hypotheses of visual cortex functionality. Moving beyond conventional approaches, we introduce a data-driven method that generates natural language descriptions for images predicted to maximally activate individual voxels of interest. Our method -- Semantic Captioning Using Brain Alignments ("BrainSCUBA") -- builds upon the rich embedding space learned by a contrastive vision-language model and utilizes a pre-trained large language model to generate interpretable captions. We validate our method through fine-grained voxel-level captioning across higher-order visual regions. We further perform text-conditioned image synthesis with the captions, and show that our images are semantically coherent and yield high predicted activations. Finally, to demonstrate how our method enables scientific discovery, we perform exploratory investigations on the distribution of "person" representations in the brain, and discover fine-grained semantic selectivity in body-selective areas. Unlike earlier studies that decode text, our method derives voxel-wise captions of semantic selectivity. Our results show that BrainSCUBA is a promising means for understanding functional preferences in the brain, and provides motivation for further hypothesis-driven investigation of visual cortex

    Alpha Net: Adaptation with Composition in Classifier Space

    Full text link
    Deep learning classification models typically train poorly on classes with small numbers of examples. Motivated by the human ability to solve this task, models have been developed that transfer knowledge from classes with many examples to learn classes with few examples. Critically, the majority of these models transfer knowledge within model feature space. In this work, we demonstrate that transferring knowledge within classified space is more effective and efficient. Specifically, by linearly combining strong nearest neighbor classifiers along with a weak classifier, we are able to compose a stronger classifier. Uniquely, our model can be implemented on top of any existing classification model that includes a classifier layer. We showcase the success of our approach in the task of long-tailed recognition, whereby the classes with few examples, otherwise known as the "tail" classes, suffer the most in performance and are the most challenging classes to learn. Using classifier-level knowledge transfer, we are able to drastically improve - by a margin as high as 12.6% - the state-of-the-art performance on the "tail" categories.Comment: Under revie
    corecore