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Abstract

We discuss a variety of psychophysical experiments that explore di�erent aspects of the problem of object
recognition and representation in human vision. In all experiments, subjects were presented with realisti-
cally rendered images of computer-generated three-dimensional objects, with tight control over stimulus
shape, surface properties, illumination, and viewpoint, as well as subjects' prior exposure to the stim-
ulus objects. Contrary to the predictions of the paradigmatic theory of recognition, which holds that
object representations are viewpoint invariant, performance in all experiments was consistently viewpoint
dependent, was only partially aided by binocular stereo and other depth information, was speci�c to view-
points that were familiar, and was systematically disrupted by rotation in depth more than by deforming
the two-dimensional images of the stimuli. The emerging concept of multiple-views representation sup-
ported by these results is consistent with recently advanced computational theories of recognition based
on view interpolation. Moreover, in several simulated experiments employing the same stimuli used in
experiments with human subjects, models based on multiple-views representations replicated many of the
psychophysical results concerning the observed pattern of human performance.
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1 Introduction

How does the human visual system represent three-
dimensional objects for recognition? Object recognition
is carried out by the human visual system with such ex-
pediency that to introspection it normally appears to be
immediate and e�ortless (Fig. 1 { canonical). Com-
putationally, recognition of a three-dimensional object
seen from an arbitrary viewpoint is complex because its
image structure may vary considerably depending on its
pose relative to the observer (Fig. 1 { non-canonical).
Because of this variability across viewpoint, simple two-
dimensional template matching is unlikely to account for
human performance in recognizing three-dimensional ob-
jects, since it would require that a discrete template be
stored for each of the in�nite number of view-speci�c
images that may arise for even a single object. Con-
sequently, the most prominent computational theories
of object recognition (see Ullman, 1989 for a survey)
have rejected the notion of view-speci�c representations.
Other approaches, rooted in pattern recognition theory,
have postulated that objects are represented as lists of
viewpoint-invariant properties or by points in abstract
multidimensional feature spaces (Duda and Hart, 1973).
Another, more commonly held, alternative is charac-
terized by the postulate that objects are represented
by three-dimensional viewpoint-invariant part-based de-
scriptions (Marr and Nishihara, 1978; Biederman, 1987),
similar to the solid geometrical models used in computer-
aided design.

Surprisingly, theories that rely on viewpoint-invariant
three-dimensional object representations fail to account
for a number of important characteristics of human per-
formance in recognition. In particular, across a wide
range of tasks, recognition performance, as measured by
response times and error rates, has been found to vary
systematically with the viewpoint of the perceiver rela-
tive to the target object. Such results provide converg-
ing evidence in favor of an alternative theory of recog-
nition, which is based on multiple viewpoint-speci�c,
largely two-dimensional representations To support this
interpretation of the psychophysical results, we review
briey several computational theories of object recog-
nition, each of which generates speci�c behavioral pre-
dictions that the experiments were designed to test.
Many of the psychophysical results are accompanied
by data from simulated experiments, in which central
characteristics of human performance were replicated by
computational models based on viewpoint-speci�c two-
dimensional representations. More about these theo-
ries and about the implemented computational models
of recognition used in our simulations can be found in
(Lowe, 1986; Biederman, 1987; Ullman, 1989; Ullman
and Basri, 1991; Poggio and Edelman, 1990; B�ultho�
and Edelman, 1992; Edelman and Weinshall, 1991).

2 Computational theories of object

recognition

Explicit computational theories of recognition serve as
good starting points for inquiry into the nature of object
representation, by providing concrete hypotheses that

may be refuted or re�ned through appropriately designed
experiments. More than any other single issue, the ques-
tion of whether object representations are viewpoint in-
variant or viewpoint dependent has been identi�ed as
the crucial distinction on which theories of recognition
stand or fall.

One can use the viewpoint-invariant/viewpoint-
dependent distinction to make speci�c psychophysical
predictions as follows. Intuitively, if the representation is
viewpoint invariant, and if an object-centered reference
frame can be recovered independently of object pose,
then neither recognition time nor accuracy should be re-
lated to the viewpoint of the observer with respect to
the object. In contrast, if the representation is view-
point dependent, and as long as the complexity of the
normalization procedure scales with the magnitude of
the transformation, then both recognition time and ac-
curacy should be systematically related to the viewpoint
of the observer with respect to the object. Subtler pre-
dictions may be derived from a closer examination of
speci�c theories.

2.1 Theories that rely on three-dimensional
object representations

Theories of the �rst kind we mention attempt to achieve
a computer-vision equivalent of complete object con-
stancy, the apparent ability of humans to perceive and
recognize three-dimensional objects irrespective of fac-
tors such as viewpoint (Ellis et al., 1989). Two major
approaches to object constancy can be discerned. The
�rst approach uses fully three-dimensional viewpoint-
invariant representations, and requires that a similar
three-dimensional representation of the input be re-
covered from the image before it is matched to like-
representations in visual memory. The second ap-
proach uses viewpoint-speci�c three-dimensional repre-
sentations (e.g., selected views that include depth infor-
mation), and requires that three-dimensional represen-
tations of the input be normalized (by an appropriate
spatial transformation) from the viewpoint of the im-
age to the viewpoint of a view-speci�c representation in
visual memory.

2.1.1 Viewpoint-invariant three-dimensional
representations

The notion that the processing of the visual in-
put culminates in a full restoration of its three-
dimensional structure which may then be matched to
three-dimensional viewpoint-invariant representations in
memory was popularized by Marr and Nishihara (1978).
Representation by reconstruction, which became known
in computer vision under the name of intrinsic images
(Barrow and Tenenbaum, 1978; Tenenbaum et al., 1981),
was never implemented, due to persistent di�culties in
solving the problem of a general reconstruction of the
three-dimensional representation from input images. De-
spite the failure of this approach in computer vision, in
psychology it has become widely accepted as a plausible
model of recognition, following the work of Biederman
and his associates.

Biederman's theory, known as Recognition By Com-
1
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Figure 1: Canonical views: certain views of three-dimensional objects are consistently easier to recognize or process
in a variety of visual tasks. Once this object is identi�ed as a tricycle seen from the front, we �nd it di�cult to
believe its recognition was anything less than immediate. Nevertheless, recognition is at times prone to errors, and
even familiar objects take longer to recognize if they are seen from unusual (non-canonical) viewpoints (Palmer
et al., 1981). Exploring this and other related phenomena can help elucidate the nature of the representation of
three-dimensional objects in the human visual system.

ponents (or more recently, Geon Structural Descriptions,
or GSD (Hummel and Biederman, 1992)), postulates
that the human visual system represents basic-level ob-
ject categories by three-dimensional structural relation-
ships between a restricted class of volumetric primitives
known as \geons" (Biederman, 1987). The crucial prop-
erty of the GSD approach is that the part descriptions
upon which object representations are built are qualita-
tive { the same object representation is derived, regard-
less of viewpoint, so long as the same con�guration of
perceptual features is present in the image. A conse-
quence of this is that GSDs actually exhibit only view-

restricted invariance in that a change in the visibility or
occlusion of parts will alter the feature con�gurations
present in the image (Hummel and Biederman, 1992;
Biederman and Gerhardstein, 1993). Therefore, the rep-
resentation of a single object will necessarily include sev-
eral characteristic (Freeman and Chakravarty, 1980) or
qualitative views, each composed of a distinct GSD and
each viewpoint-invariant only for a limited range of view-
points.

2.1.2 Viewpoint-speci�c three-dimensional
representations in conjunction with
normalization

As a representative of this class of theories we con-
sider recognition by viewpoint normalization, of which
Ullman's method of alignment is an instance (Ullman,
1989). In the alignment approach the two-dimensional
input image is compared with the projection of a stored
three-dimensional model, much like in template match-
ing, but only after the two are brought into register. The
transformation necessary to achieve alignment is com-

puted by matching a small number of features in the
image with the corresponding features in the complete
three-dimensional model. The aligning transformation
is computed separately for each of the models stored in
visual memory (but only one per object). The outcome
of the recognition process is the model whose projec-
tion matches the input image most closely after the two
are aligned. Related schemes (Lowe, 1986; Thompson
and Mundy, 1987) select the most appropriate model in
visual memory by using the \viewpoint consistency con-
straint" which projects each model to a hypothesized
viewpoint and then relates the projected locations of the
resultant image features to the input image, thereby de-
riving a mapping of the image to the three-dimensional
structure of stored object representations.

Ullman (1989) distinguishes between a full alignment
scheme that employs complete three-dimensional mod-
els and attempts to compensate for all possible three-
dimensional transformations that objects may undergo,
such as rotation in depth, and a partial alignment scheme
that employs pictorial descriptions that decompose ob-
jects into (non-generic) parts and uses multiple views
rather than a single viewpoint-invariant description to
compensate for some three-dimensional transformations.
Ullman notes (ibid., p.228) that this latter multiple-
views approach to alignment involves a representation
that is \view-dependent, since a number of di�erent
models of the same object from di�erent viewing po-
sitions will be used," but at the same time is \view-
insensitive, since the di�erences between views are par-
tially compensated by the alignment process." As such,
this approach is similar to Biederman's (Hummel and
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Biederman, 1992) most recent version of GSD theory
in which multiple viewpoint-invariant GSDs are used to
represent a single object (although because GSDs are
considered to be qualitative descriptions, no alignment
process is ever postulated to compensate for di�erences
in viewpoint). Regardless of these subtle di�erences,
both versions of alignment theory (hereafter referred to
simply as alignment) may include the assumption that
normalization procedures do not depend on the mag-
nitude of the transformation { consequently, viewpoint-
invariant performance in recognition tasks (e.g., response
times and error rates) may be considered their central
distinguishing feature. Alternatively, the complexity of
normalization may scale with the magnitude of transfor-
mation, and as such, viewpoint-invariant performance is
predicted only for error rates, with viewpoint-dependent
patterns predicted for response times.

2.2 Theories that rely on viewpoint-dependent
two-dimensional object representations

Theories of the second kind we mention here each at-
tempt to achieve object constancy by storing multi-
ple two-dimensional viewpoint-speci�c representations
(e.g., image-based views) and including mechanisms for
matching input images to stored views or to views de-
rived computationally from stored views. While the
speci�c mechanisms postulated for accomplishing this
match vary among theories (and have consequences for
the subtler predictions of each), they may all be con-
sidered as computational variants of the empirically-
based multiple-views-plus-transformation (MVPT) the-
ory of recognition (Tarr and Pinker, 1989). MVPT pos-
tulates that objects are represented as linked collections
of viewpoint-speci�c images (\views"), and that recogni-
tion is achieved when the input image activates the view
(or set of views) that corresponds to a familiar object
transformed to the appropriate pose. There is evidence
(Edelman and Weinshall, 1991; Tarr, 1989; Tarr and
Pinker, 1989) indicating that this process can result in
the same dependence of the response time on the pose
of the stimulus object as obtained in the mental rotation
experiments (Shepard and Cooper, 1982). We consider
MVPT as a psychological model of human performance
that predicts recognition behavior under speci�c condi-
tions; the computational models reviewed below provide
details on how this performance may be achieved.

2.2.1 Linear combination of views (LC)

Several recently proposed approaches to recognition
dispense with the need to represent objects as three-
dimensional models. The �rst of these, recognition by
linear combination of views (Ullman and Basri, 1991), is
built on the observation that, under orthographic projec-
tion, the two-dimensional coordinates of an object point
can be represented as a linear combination of the coor-
dinates of the corresponding points in a small number
of �xed two-dimensional views of the same object. The
required number of views depends on the allowed three-
dimensional transformations of the objects and on the
representation of an individual view. For a polyhedral
object that can undergo a general linear transformation,

three views are required if separate linear bases are used
to represent the x and the y coordinates of a new view.
Two views su�ce if a mixed x; y basis is used (Ullman
and Basri, 1991). A system that relies solely on the
linear combination approach (LC) should achieve uni-
formly high performance on those views that fall within
the space spanned by the stored set of model views, and
should perform poorly on views that belong to an or-
thogonal space.

2.2.2 View interpolation by basis functions
(HyperBF)

Another approach that represents objects by sets of
two-dimensional views is view interpolation by regular-
ization networks (Poggio and Edelman, 1990; Poggio
and Girosi, 1990). In this approach, generalization from
stored to novel views is regarded as a problem of mul-
tivariate function interpolation in the space of all possi-
ble views. The interpolation is performed in two stages.
In the �rst stage intermediate responses are formed by
a collection of nonlinear receptive �elds (these can be,
e.g., multidimensional Gaussians). The output of the
second stage is a linear combination of the intermediate
receptive �eld responses.

More explicitly, a Gaussian-shaped basis function is
placed at each of the prototypical stored views of the
object, so that an appropriately weighted sum of the
Gaussians approximates the desired characteristic func-
tion for that object over the entire range of possible views
(see (Poggio and Edelman, 1990; Edelman and Poggio,
1992) for details). Recognition of the object represented
by such a characteristic function amounts to a compari-
son between the value of the function computed for the
input image and a threshold.

2.2.3 Conjunction of localized features (CLF)

The third scheme we mention is also based on inter-
polation among two-dimensional views and, in addition,
is particularly suitable for modeling the time course of
recognition, including long-term learning e�ects (Edel-
man and Weinshall, 1991; Edelman, 1991b; Tarr, 1989;
Tarr and Pinker, 1989). The scheme is implemented as a
two-layer network of thresholded summation units. The
input layer of the network is a retinotopic feature map
(thus the model's name). The distribution of the con-
nections from the �rst layer to the second, or represen-
tation, layer is such that the activity in the second layer
is a blurred version of the input. Unsupervised Hebbian
learning augmented by a winner-take-all operation en-
sures that each su�ciently distinct input pattern (such
as a particular view of a three-dimensional object) is
represented by a dedicated small clique of units in the
second layer. Units that stand for individual views are
linked together in an experience-driven fashion, again
through Hebbian learning, to form a multiple-view rep-
resentation of the object. When presented with a novel
view, the CLF network can recognize it through a pro-
cess that amounts to blurred template matching and is
related to nonlinear basis function interpolation.
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3 Recognition behavior as predicted by

the di�erent theories

3.1 Experimental issues

A wide range of psychophysical experiments have been
reported that assess the impact of changes of view-
point on the recognition of both familiar and novel stim-
uli. The core issue in all such studies is whether re-
sponse times and/or error rates are equivalent for all
changes in viewpoint or are systematically related to
the magnitude of changes in viewpoint. Such behav-
ioral patterns can help to decide which representations
(viewpoint-invariant or viewpoint-dependent) are used
in object recognition. However, one must be cautious
in interpreting such patterns { there are instances of
both viewpoint-invariant and viewpoint-dependent be-
havior that do not necessarily imply correspondingly
viewpoint-invariant or viewpoint-dependent representa-
tions. In particular, there is an asymmetry in what may
be concluded from viewpoint-invariant patterns of re-
sponses. For novel objects, because of the limited stimu-
lus set sizes employed in many experiments, a viewpoint-
invariant pattern may simply indicate that in the context
of the experimentally de�ned recognition set, subjects
were able to recognize objects via localized viewpoint-
invariant features within each object (Eley, 1982). In
contrast, in the context of all potentially recognizable
objects in the world, such features would not be unique
and consequently would not support viewpoint-invariant
recognition. Thus, one of the many challenges that must
be overcome in assessing recognition mechanisms in hu-
mans is the development of novel stimuli that do not
facilitate the reliance on unique features (to the extent
that such features are unlikely to be unique in the real
world). A similar problem of interpretation exists for fa-
miliar objects: a viewpoint-invariant pattern may arise
as a result of multiple familiar stored views (distributed
across viewpoint so as to maskmost e�ects of viewpoint).
Thus, another challenge that must be overcome is how
to assess the possible existence of multiple-views in cases
where objects are very familiar, presumably leading to
the instantiation of many views.

Examples of di�culties of interpretation may also be
found in patterns of performance that are viewpoint-
dependent. For instance, initial viewpoint-dependency
for novel objects may occur because viewpoint-invariant
representations may arise only over experience. Thus,
learning processes must be considered in assessing recog-
nition. Viewpoint-dependent patterns may arise because
of reliance on perceptual information possibly irrelevant
to recognition { for example, mirror-image discrimina-
tion requires left/right handedness information de�ned
in only in our ego-centric frame of reference, therefore,
mental rotation is apparently used to normalize objects
to this frame (Shepard and Cooper, 1982). Thus, a �-
nal challenge is to ensure that extraneous factors, for
instance, handedness, do not produce behavioral pat-
terns that are not typical of recognition judgments. As
discussed in Sections 4.3 and 5, these challenges are
addressed in experiments conducted by B�ultho� and
Edelman (B�ultho� and Edelman, 1992; Edelman and

B�ultho�, 1992a) and by Tarr (Tarr, 1989; Tarr and
Pinker, 1989). Briey, these experiments employed the
following manipulations:

� Novel stimulus objects that shared similar
parts in di�erent spatial relationships (typical
of subordinate-level recognition discriminations),
thereby reducing the possibility of localized unique
features mediating recognition (see Fig. 2).

� Measures assessing both the initial recognition of
novel objects and recognition following extensive
familiarization.

� Restricted sets of viewpoints during initial train-
ing or other controls (see below) to investigate the
degree of viewpoint speci�city encoded in object
representations of familiar objects or novel objects
following extensive familiarization.

� The introduction of unfamiliar \test" views to as-
sess the underlying organization of views instanti-
ated during learning.

� Recognition tasks that reduced the likelihood of
extraneous inuences on recognition performance.
For instance, some studies controlled for handed-
ness by using bilaterally symmetrical objects or
treating both members of mirror-pairs as equiva-
lent.

Additionally, to di�erentiate between the more sub-
tle predictions of viewpoint-dependent theories of recog-
nition, we have investigated the performance in three
distinct cases, each corresponding to a di�erent kind of
test views. In the �rst and easiest case, the test views
are familiar to the subject (that is, test views re shown
during training). In the second case, the test views are
unfamiliar, but are related to the training views through
a rigid three-dimensional transformation of the target.
In this case the problem can be regarded as generaliza-
tion of recognition to novel views. In the third case,
which is especially relevant in the recognition of artic-
ulated or exible objects, the test views are obtained
through a combination of rigid transformation and non-
rigid deformation of the target object. To better place
the results of such experiments in a theoretical context,
we �rst review the speci�c theoretical predictions gener-
ated by each theory of recognition.

3.2 Theoretical predictions

The theories discussed in Section 2 make di�erent predic-
tions about the e�ect of factors such as viewpoint on the
accuracy and latency of recognition under the various
conditions outlined above. As mentioned, at the most
general level, theories that rely on viewpoint-invariant
representations predict no systematic e�ect of viewpoint
on either response times or error rates, both for familiar
and for novel test views, provided that the representa-
tional primitives (i.e., invariant features or generic parts)
can be readily extracted from the input image. In com-
parison, theories that rely on viewpoint-dependent rep-
resentations naturally predict viewpoint-dependent per-
formance. However, the details of such predictions vary
according to the speci�cs of the approach postulated by
each particular theory.
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Figure 2: The appearance of a three-dimensional object
can depend strongly on the viewpoint. The image in
the center represents one view of a computer graphics
object (wire-, amoeba-, or cube-like). The other im-
ages are derived from the same object by �75� rotation
around the vertical or horizontal axis. The di�erence be-
tween the images illustrates the di�culties encountered
by any straightforward template matching approach to
three-dimensional object recognition. Thin wire-like ob-
jects have the nice property that the negligible amount
of occlusion provides any recognition system with equal
amount of information for any view. A realistic recogni-
tion system has to deal with the more di�cult situation
of self-occlusion as demonstrated with the amoeba-like
objects.

3.2.1 Viewpoint-invariant three-dimensional
representations

A recognition scheme based on viewpoint-invariant
three-dimensional representations may be expected to
perform poorly only for those views which by an acci-
dent of perspective lack the information necessary for the

recovery of the reference frame in which the viewpoint-
invariant description is to be formed (Marr and Nishi-
hara, 1978; Biederman, 1987). In a standard example of
this situation, an elongated object is seen end-on, caus-
ing a foreshortening of its major axis, and an increased
error rate, due presumably to a failure to achieve a stable
description of the object in terms of its parts (Marr and
Nishihara, 1978; Biederman, 1987). In all other cases
this theory predicts independence of response time on
orientation, and a uniformly low error rate across dif-
ferent views. Furthermore, the error rate should remain
low even for deformed objects, as long as the deforma-
tion does not alter the make-up of the object in terms of
its parts and their qualitative spatial relations.

Similar predictions are made by the most recent ver-
sion of GSD theory (Biederman and Gerhardstein, 1993;
Hummel and Biederman, 1992) to the extent that given
GSD is considered to be viewpoint invariant up to
changes in the visibility or occlusion of speci�c geons.
Therefore, as long as the complete set of GSDs is fa-
miliar for a given object, recognition behavior will be
completely viewpoint invariant. However, under condi-
tions where some GSDs are unfamiliar or, more gener-
ally, under conditions where the GSD recovered from an
image must be matched to a di�erent GSD in memory,
recognition behavior will degrade qualitatively, that is,
without any systematic relationship to the magnitude
of changes in viewpoint (Biederman and Gerhardstein,
1993). Thus, GSD theory predicts viewpoint invariance
for the recognition of familiar objects and only step-like
viewpoint-dependent patterns for the recognition of un-
familiar objects undergoing extreme changes in visible
part structure.

3.2.2 Viewpoint-dependent three-dimensional
representations

Consider next the predictions of those theories that
explicitly compensate for viewpoint-related variability of
apparent shape of objects, by normalizing or transform-
ing the object to a standard viewpoint. As mentioned,
if the recognition system represents an object by multi-
ple views and uses an incremental transformation pro-
cess for viewpoint normalization, response times are ex-
pected to vary monotonically with the viewpoint of the
test view relative to one of stored views. This pattern
of response times will hold for many of the familiar, as
well as for novel test views, since the system may store
selectively only some of the views it encounters for each
object, and may rely on normalization for the recogni-
tion of other views, either familiar or novel. In contrast
to the expected dependence of response times on view-
point, the error rate under the viewpoint normalization
approach will be uniformly low for any test view, either
familiar or novel, in which the information necessary for
pose estimation is not lost (thereby leading to successful
recognition). Alternatively, if normalizing or transform-
ing the object uses a \one-shot" transformation process
for viewpoint normalization, response times will likewise
be viewpoint invariant. In either case, the predictions
of this theory may be di�erentiated from theories that
rely on two-dimensional representations and normaliza-

5



tion procedures in that the latter predict e�ects of view-
point for both response times and error rates (as dis-
cussed in the following sections). By comparison, theo-
ries based on three-dimensional representations predict
that error rates will not vary with viewpoint (regardless
of the pattern of response times).

3.2.3 Linear combination of views

The predictions of the LC scheme vary according to
the particular version used. The basic LC scheme pre-
dicts uniformly successful generalization to those views
that belong to the space spanned by the stored set of
model views. It is expected to perform poorly on views
that belong to an orthogonal space. In contrast, the
mixed-basis LC (MLC) is expected to generalize per-
fectly, just as the three-dimensional viewpoint-invariant
schemes do. Furthermore, the varieties of the LC scheme
should not bene�t signi�cantly from the availability of
depth cues, because they require that the views be en-
coded as lists of coordinates of object features in two-
dimensions and cannot accommodate depth information.
Regarding the recognition of deformed objects, the LC
method will generalize to any view that belongs to a
hyperplane spanned by the training views (Ullman and
Basri, 1991). For the LC+ scheme (that is, LC aug-
mented by quadratic constraints verifying that the trans-
formation in question is rigid), the generalization will be
correctly restricted to the space of the rigid transforma-
tions of the object, which is a nonlinear subspace of the
hyperplane that is the space of all linear transformations
of the object.

3.2.4 View interpolation

Finally, consider the predictions of the view interpo-
lation theory. First, as with theories that rely on three-
dimensional representations, e�ects of viewpoint on re-
sponse times are expected to vary with speci�c imple-
mentation details. In one instance, there will be no sys-
tematic increase in response times with changes in view-
point if the transformation (in this case, interpolation)
mechanism is \one-shot" instead of incremental. In the
other instance, response times will increase with increas-
ing changes in viewpoint if the interpolation involves
an incremental process, for example, a time-consuming
spread of activation in a distributed implementation.

We note that while activation-spread models have
been proposed as accounts of viewpoint-dependent re-
sponse times in object recognition (Edelman and Wein-
shall, 1991), they may also o�er a plausible mecha-
nism for many so-called mental transformation phenom-
ena. For instance, it is well documented that at the
behavioral level, humans employ a transformation pro-
cess commonly referred to as \mental rotation" during
some perceptual judgments (Shepard and Cooper, 1982).
The explanation o�ered by Shepard is that such trans-
formations are mental analogs of actual physical trans-
formations { a hypothesis which still stimulates a major
debate in cognitive science, but does not seem to lead to
a plausible neural or computational theory. In its stead,
we propose that, to the extent that a given theory of
view interpolation relies on an incremental process, it

may provide a plausible account of mental transforma-
tion behavioral patterns across many tasks.1

Another prediction of the view interpolation theory is
lower error rate for familiar test views than for novel test
views, depending on the distance from the novel view to
the nearest familiar stored view. Some variation in the
error rate among the familiar views is also possible, if
the stored prototypical views form a proper subset of
the previously seen ones (in which case views that are
the closest to the stored ones will be recognized more
reliably than views that have been previously seen, but
were not included in the representation). For deformed
objects, generalization is expected to be as signi�cant
as for novel views produced by rigid transformations.
Furthermore, better generalization should be obtained
for test views produced by the same deformation method
used in training.

4 Psychophysical background

4.1 Basic vs. subordinate-level recognition

Numerous studies in cognitive science (see Rosch et al.,
1976 for a review) reveal that in the hierarchical struc-
ture of object categories there exists a level of category
organization, referred to as the basic level, which is the
most salient according to a variety of psychological cri-
teria (such as the ease and preference of access). Taking
as an example the hierarchy \quadruped, mammal, cat,
Siamese", the basic level is that of \cat". While basic-
level categorical structure is unlikely to a product of ei-
ther purely de�nitional or perceptual mechanisms (Arm-
strong et al., 1983), there is some evidence that basic-
level categories are organized to some extent around per-
ceptual properties of objects. For instance, Tversky and
Hemenway (1984) have proposed that the presence of
common parts in similar con�gurations is one of the es-
sential properties in determining category membership.
However, given this conjecture, it is clear that some ap-
parent members of a particular basic-level category are
inappropriate. For example, while robins, bluejays, and
penguins all share membership in the category \bird,"
only the �rst two actually share many common parts.
Both the shape and consequently the parts of penguins
are dissimilar to prototypical birds. Likewise, in terms
of naming performance, it is clear that the basic level
fails to capture some aspects of categorization behavior;
for example, the �rst label assigned to an image of a
penguin is likely to be \penguin" rather than \bird" {

1Indeed, a view interpolation account of Tarr's data on ob-
ject recognition supports this proposal. Tarr (1989; Tarr and
Pinker, 1989) compared directly the response time patterns
obtained in recognition tasks to those obtained using iden-
tical objects in identical viewpoints in perceptual judgments
known to elicit the use of mental transformations. The com-
parison revealed that recognition and transformation tasks
yield highly similar putative rates of \rotation" as well as
deviations from monotonicity. While such evidence is neces-
sarily only circumstantial, it provides some indications that
well-speci�ed computational theories of recognition may also
inform us as to the mechanisms used in other aspects of visual
cognition.
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a behavior consistent with the dissociation at the per-
ceptual level. Consequently, it has been suggested that
for purposes of characterizing recognition performance,
the basic level should be supplanted by the entry level

{ the �rst categorical label generally assigned to a given
object (Jolicoeur et al., 1984). To the extent that theo-
ries of recognition attempt to account for classi�catory
behavior, they do so for entry-level performance (i.e.,
Biederman, 1987; Hummel and Biederman, 1992).

In contrast to the entry-level, objects whose recog-
nition implies �ner distinctions than those required for
entry-level categorization are said to belong to a subor-

dinate level. In terms of perceptual content, the sub-
ordinate level may be characterized by objects having
similar overall shape as a consequence of sharing similar
parts in similar spatial relationships. Typical examples
of subordinate-level or within-category discriminations
include recognizing individual faces or speci�c models of
cars.

Crucially, the pattern of response times and error
rates in recognition experiments appears to be inu-
enced to a large extent by the category level at which
the distinction between the di�erent stimuli is to be
made (Edelman, 1992). Speci�cally, if the subjects are
required to classify the stimulus (that is, to determine
its entry-level category), error rates and response times
are often found to be viewpoint invariant (except in in-
stances where the three-dimensional structure of the ob-
ject is severely distorted, e.g., due to foreshortening; see
Biederman 1987). In contrast, if the task is to identify

a speci�c object (that is, to discriminate one individual
from other, visually similar objects sharing parts and
spatial relations), error rates and response times are nor-
mally viewpoint dependent. While this distinction is cer-
tainly true in its extreme form (for instance, objects hav-
ing no parts in commonwill almost certainly be members
of di�erent entry-level categories and, likewise, may be
discriminated by viewpoint-invariant unique features) it
is less clear that \everyday" entry-level performance is
mediated by viewpoint-invariantmechanisms. For exam-
ple, as discussed in the following section, naming times
(generally at the entry-level) for familiar common ob-
jects have been found to be viewpoint-dependent. More
importantly, because entry-level categories are only ac-
quired over extensive experience with many instances
of each class, it is possible that multiple viewpoint-
dependent representations are acquired as the category
is learned. As discussed in Section 3.1, this leads to
an asymmetry in the kind of conclusions that can be
drawn from viewpoint-invariant performance: for famil-
iar entry-level categories, the reliance on multiple views
may mask the operation of any viewpoint-dependent
mechanisms. Thus, it is di�cult to assess the under-
lying structure of object representations through entry-
level tasks employing familiar objects as stimuli. To ad-
dress this problem, we are currently undertaking sev-
eral psychophysical studies in which the acquisition of
entry-level categories for novel objects is manipulated in
conjunction with viewpoint. To the extent that entry-
level categorization is normallyviewpoint-invariant, such
performance should be found regardless of which views

have been displayed; alternatively, to the extent that
entry-level categorization relies on multiple-views, per-
formance should vary systematically in relation to the
views that are familiar.

4.2 Canonical views

Most familiar common objects such as houses, animals,
or vehicles are recognized faster or more slowly, depend-
ing on the viewpoint of the observer (as demonstrated
in Figure 1). This phenomenon has been de�ned orig-
inally purely in descriptive and qualitative terms. For
instance, Palmer, Rosch and Chase (1981) found that
subjects consistently labeled one or two views, desig-
nated as canonical views, of such objects as subjectively
\better" than all other views. Consistent with such rat-
ings, a naming task revealed that subjects tended to re-
spond fastest when the stimulus was shown in a canon-
ical view (as determined independently in the afore-
mentioned subjective judgment experiment), with re-
sponse times increasing monotonically with changes in
viewpoint relative to this view. This demonstration of
viewpoint-dependent naming is consistent with the hy-
pothesis that multiple-views mediate recognition even at
the entry-level; in particular, theories of recognition that
rely on viewpoint-speci�c representations may accom-
modate such results quite naturally, while theories that
rely on viewpoint-invariant representations will require
added complexity solely to account for this behavior. It
should be noted however, that at the entry level, canon-
ical views are largely a response time phenomenon (the
error rate for basic-level naming, as found by Palmer et.
al., was very low, with the errors being slightly more
frequent for the worst views than for others). In com-
parison, at the subordinate levels canonical views are
apparent in the distribution of error rates as well as re-
sponse times, where they constitute strong and stable
evidence in favor of viewpoint-dependent nature of ob-
ject representations (see Section 5.1). Thus, while entry-
level and subordinate-level recognition may share some
common representational structures, they may di�er at
some level of processing, for instance, in the threshold
for what constitutes a correct match.

4.3 Mental transformation and its
disappearance with practice

As discussed in Section 3.1, the body of evidence docu-
menting the monotonic dependency of recognition time
on viewpoint has been interpreted recently (Tarr, 1989;
Tarr and Pinker, 1989; Tarr and Pinker, 1990) as an
indication that objects are represented by a few spe-
ci�c views, and that recognition involves viewpoint nor-
malization (via alignment, linear combinations, or Hy-
perBF's) to the nearest stored view, by a process simi-
lar to mental rotation (Shepard and Cooper, 1982). A
number of researchers have shown the di�erences in re-
sponse time among familiar views to be transient, with
much of the variability disappearing with practice (see,
e.g., Jolicoeur, 1985; Koriat and Norman, 1985; Tarr,
1989; Tarr and Pinker, 1989). Thus, experience with
many viewpoints of an object leads to apparent view-
point invariance. However, to reiterate the point made
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in Section 3.1, such performance is not diagnostic in that
it may arise as a result of either multiple-views or as a
single viewpoint-invariant representation.

To distinguish between these two possibilities, Tarr
and Pinker (1989; also Tarr, 1989) investigated the e�ect
of practice on the pattern of responses in the recognition
of novel objects, which are particularly suitable for this
purpose because they o�er the possibility of complete
control over the subjects' prior exposure to the stim-
uli. Speci�cally, their experiments included three phases:
training, practice, and surprise. Feedback about the cor-
rectness of their responses was provided to subjects in
all phases. During training, subjects learned to identify
three or four novel objects from a single viewpoint. Cru-
cially, the stimulus objects shared similar parts in dif-
ferent spatial relationships, a perceptual discrimination
characteristic of subordinate-level recognition. To assess
the initial e�ects of changes of viewpoint on recognition,
during practice, subjects named the objects in a small
select set of viewpoints.2 Consistent with the hypoth-
esis that objects are recognized by a normalization to
viewpoint-speci�c two-dimensional representations, ini-
tial naming times and accuracy were both monotonically
related to the change in viewpoint (a �nding also con-
sistent with the results of Palmer, et. al., 1981, and
Jolicoeur, 1985). In particular, the magnitude of this
e�ect was comparable in terms of putative rate of ro-
tation (as measured by the slope of the response time
function) to the rates found in classic studies of men-
tal rotation (Shepard and Cooper, 1982) and to control
experiments in which the same novel stimuli were dis-
criminated on the basis of left/right handedness in the
identical viewpoints. However, as expected, this e�ect
of viewpoint diminished to near equivalent performance
at all familiar viewpoints with extensive practice. At
this point, the surprise phase was introduced, during
which subjects named the same now-familiar objects in
new, never-before-seen viewpoints as well as in previ-
ously practiced familiar viewpoints (see Fig. 3).

The surprise phase manipulation is diagnostic for dis-
tinguishing between viewpoint-invariant and viewpoint-
dependent theories in that the former class of theories
predict that the mechanisms used to achieve invariance
for the familiar viewpoints may be used to recognize
stimuli independent of viewpoint in the unfamiliar view-
points as well; in contrast, the latter class of theories pre-
dict that no such generalization will occur, rather, the
viewpoint-dependent mechanisms used to match stimuli
to stored familiar views will now necessitate that stim-
uli in unfamiliar views be normalized with stored views.
Consistent with this latter prediction, numerous experi-
ments have revealed patterns in both response times and
error rates that vary monotonicallywith the distance be-
tween the unfamiliar viewpoint and the nearest familiar
view (Fig. 3). Importantly, the magnitude of such ef-
fects was comparable to the viewpoint e�ects found in
the initial practice phase of each experiment { indicat-

2To ensure that subjects did not rely on unique features,
several \distractor" objects were also included. Rather than
naming such objects, subjects simply made a \none-of-the-
above" response.

ing that the same viewpoint-dependent mechanism was
employed both when the stimuli were relatively novel
and when they were highly familiar (the crucial di�er-
ence being the number of views encoded per object).
Indeed, as before, further experience with a wide range
of views (all of the viewpoints in the surprise phase)
once again led to a dimunition in the e�ect of viewpoint
on performance for those speci�c viewpoints, presum-
ably because additional views were acquired with experi-
ence. Similar �ndings have been observed under numer-
ous stimulus manipulations that controlled for the possi-
bility that e�ects of viewpoint were the result of superu-
ous handedness checks, including experiments employing
bilaterally symmetrical objects and cases where mirror-
image pairs were treated as equivalent. Overall, these re-
sults provide strong evidence that, at least for purposes
of subordinate-level recognition, objects are represented
as viewpoint-speci�c multiple-views and recognized via
viewpoint-dependent normalization processes.

4.4 Limited generalization

The pattern of error rates in experiments by Rock and
his collaborators (Rock and DiVita, 1987) indicates that
when the recognition task can only be solved through
relatively precise shape matching (such as required for
subordinate-level recognition of the bent wire-forms used
as stimuli), the error rate reaches chance level already at
a misorientation of about 40� relative to a familiar atti-
tude (Rock and DiVita, 1987), see also Figure 6. A sim-
ilar limitation seems to hold for people's ability to imag-
ine the appearance of such wire-forms from unfamiliar
viewpoints (Rock, Wheeler and Tudor, 1989). However,
such results may present an extreme case in terms of
performance. Farah (Farah et al., 1994) observed that
when Rock's wire-forms were interpolated with a smooth
clay surface (creating \potato-chip" objects), subjects'
recognition accuracy increased dramatically for changes
in viewpoint equivalent to those tested by Rock. Thus,
object shape and structure plays a signi�cant role in
the ability of humans to compensate for variations in
viewpoint (for instance, see Koenderink and van Doorn,
1979). One possibility is that as the structure of ob-
jects becomes more regular (in terms of properties such
as spatial relations and symmetries), the ability to com-
pensate e�ciently for changes in viewpoint is enhanced,
in that the resultant image structure is predictable (Vet-
ter et al., 1994). One consequence is that error rates may
be reduced and performance will be enhanced, although
it is possible that mixed strategies or veri�cation proce-
dures will yield response times that are still dependent
on viewpoint (as seen in the naming of familiar common
objects in non-canonical views, Palmer, et. al., 1981).

5 Psychophysics of subordinate-level

recognition

Despite the availability of data indicating that multiple-
views and normalization mechanisms play some role in
subordinate-level recognition (Section 4.3), psychophys-
ical research has left many of the questions vital to com-
putational understanding of recognition unanswered.
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Figure 3: Mean response times for correctly naming familiar \cube" objects in familiar and unfamiliar viewpoints.
Viewpoints were generated by rotations in depth (around the x or y axis) or in the picture-plane (around the z
axis). Filled data points represent familiar viewpoints learned during training and extensive practice; open points
represent unfamiliar viewpoints introduced in the \surprise" phase of the experiment. Prior to this phase, extensive
practice resulted in the onset of equivalent naming performance at all familiar viewpoints { a pattern consistent
both with the acquisition of multiple viewpoint-dependent \views" and with the acquisition of a single viewpoint-
invariant description. Performance in the surprise phase distinguishes between these two possibilities: naming times
(and error rates) increased systematically with angular distance from the nearest familiar viewpoint, indicating that
subjects represented familiar objects as multiple-views and employed a time-consuming normalization process to
match unfamiliar viewpoints to familiar views. One of the 7 \cube" objects is shown along with the axis of rotation
to the right of each plot (data and stimuli adapted from Tarr, 1989).

9



View-sphere visualization of RT = f(viewangle)
Session 1

Session 2

Figure 4: Canonical views and practice: the advantage of some views over others, as manifested in the pattern
of response times (RTs) to di�erent views of wire-like objects, is reduced with repeated exposure. The spheroid
surrounding the target is a three-dimensional stereo-plot of response time vs. aspect (local deviations from a perfect
sphere represent deviations of response time from the mean). The three-dimensional plot may be viewed by free-
fusing the two images in each row, or by using a stereoscope. Top, Target object and response time distribution
for Session 1. Canonical aspects (e.g., the broadside view, corresponding to the visible pole of the spheroid) can be
easily visualized using this display method. Bottom, The response time di�erence between views are much smaller
in Session 2. Note, that not only did the protrusion in the spheroid in Session 1 disappear but also the dip in the
polar view is much smaller in Session 2. Adapted from Edelman and B�ultho�, 1992.

For example, it is still unclear whether the canonical
views phenomenon reects basic viewpoint dependence
of recognition, or is due to particular patterns of the
subjects' exposure to the stimuli.3 More importantly,
existing data are insu�cient for testing the subtler pre-
dictions of the many computational theories concerning
generalization to novel views and across object deforma-
tions. Finally, the role of depth cues in recognition has
been largely unexplored. The experiments described in
this section were designed to address many such issues,
concentrating on subordinate-level identi�cation, which,
unlike entry-level classi�cation (Biederman, 1987), has
been relatively unexplored.

All the experiments described below employed tasks
in which subjects were asked to explicitly recall
whether a currently displayed object had been previously

3Recent psychophysical and computational studies indi-
cate that viewpoint dependence may be to a large extent an
intrinsic characteristic of 3D shapes (Cutzu and Edelman,
1992; Weinshall et al., 1993).

presented.4 Each experiment consisted of two phases:
training and testing. In the training phase subjects were
shown a novel object de�ned as the target, usually as a
motion sequence of two-dimensional views that led to an
impression of three-dimensional shape through structure
from motion. In the testing phase the subjects were pre-
sented with single static views of either the target or a
distractor (one of a relatively large set of similar objects).
The subject's task was to press a \yes"-button if the dis-
played object was the current target and a \no"-button
otherwise, and to do it as quickly and as accurately as

4Such a judgment is commonly referred to as an \explicit"
memory task. While some dissociations in performance have
been found between similar explicit tasks and so-called \im-
plicit" tasks such as priming or naming (Schacter, 1987),
there is little evidence to indicate that this dissociation holds
for changes across viewpoint (Cooper and Schacter, 1992).
Moreover, Palmer, et. al.'s, (1981) and Tarr's (1989; Tarr
and Pinker, 1989) studies employed implicit tasks, yet still
revealed robust e�ects of viewpoint.
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possible. No feedback was provided as to the correctness
of the response.

5.1 Canonical views and their development
with practice

To explore the �rst issue raised above, that of the deter-
minants of canonical views, we tested the recognition of
views all of which have been previously seen as a part
of the training sequence (for further details see (Edel-
man and B�ultho�, 1992a), Experiment 1). Our stimuli
proved to possess canonical views, despite the fact that
in training all views appeared with equal frequency. We
also found that the response times for the di�erent views
became more uniform with practice. The development
of canonical views with practice is shown in Figure 4 as
a three-dimensional stereo-plot of response time vs. ori-
entation, in which local deviations from a perfect sphere
represent deviations of response time from the mean.
For example, the di�erence in response time between a
\good" and a \bad" view in the �rst session (the dip
at the pole of the sphere and the large protrusion in
Fig. 4, top) decreases in the second session (Fig. 4, bot-
tom). The pattern of error rates, in comparison, re-
mained largely una�ected by repeated exposure.

5.2 Role of depth cues

5.2.1 Depth cues and the recognition of
familiar views

A second set of experiments explored the role of three
di�erent cues to depth in the recognition of familiar
views (for details, see (Edelman and B�ultho�, 1992a),
Experiment 2). Whereas in the previous experiment test
views were two-dimensional and the only depth avail-
able cues were shading of the objects and interposition
of their parts, we now added texture and binocular stereo
to some of the test views, and manipulated the position
of the simulated light source to modulate the strength
of the shape from shading cue (cf. B�ultho� and Mallot,
1988).

The stimuli were rendered under eight di�erent com-
binations of values of three parameters: surface texture
(present or absent), simulated light position (at the sim-
ulated camera or to the left of it) and binocular dispar-
ity (present or absent). Training was done with maxi-
mal depth information (oblique light, texture and stereo
present). Stimuli were presented using a noninterlaced
stereo viewing system (StereoGraphics Corp.). A �xed
set of views of each object was used both in training and
in testing. We found that both binocular disparity and,
to a smaller extent, light position a�ected performance.
The error rate was lower in the stereo compared to
mono trials (11:5% as opposed to 18:0%) and lower un-
der oblique lighting than under head-on lighting (13:7%
compared to 15:8%).

5.2.2 Depth cues and the generalization to
novel views

A second manipulation probed the inuence of binoc-
ular disparity (shown to be the strongest contributor of
depth information to recognition) on the generalization
of recognition to novel views (for details, see Edelman

Figure 5: Generalization to novel views: An illustration
of the inter, extra and ortho conditions. Computa-
tional theories of recognition outlined in Section 2 gen-
erate di�erent predictions as to the relative degree of
generalization in each of the three conditions. We have
used this to distinguish experimentally between the dif-
ferent theories.

and B�ultho�, 1992, Experiment 4). The subjects were
�rst trained on a sequence of closely spaced views of the
stimuli, then tested repeatedly on a di�erent set of views,
spaced at 10� intervals (0� to 120� from a reference view
at the center of the training sequence).

The mean error rate in this experiment was 14:0% un-
der mono and 8:1% under stereo. In the last session of
the experiment, by the time the transient learning e�ects
have disappeared, the error rate under mono approached
the error rate under stereo, except for the range of mis-
orientation between 50� and 80�, where mono was much
worse than stereo. Notably, error rate in each of the
two conditions in the last session was still signi�cantly
dependent on misorientation.

5.3 Generalization to novel views

A related experiment used an elaborate generalization
task to distinguish among three classes of object recog-
nition theories mentioned in Section 2: alignment, linear
combination of views (LC), and view interpolation by
basis functions (HyperBF). Speci�cally, we explored the
dependence of generalization on the relative position of
training and test views on the viewing sphere (for de-
tails, see B�ultho� and Edelman, 1992). We presented
the subjects with the target from two viewpoints on the
equator of the viewing sphere, 75o apart. Each of the two
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Human Subjects RBF Model

Figure 6: Generalization to novel views: Top left: Error rate vs. misorientation relative to the reference (\view-
0" in Fig. 5) for the three types of test views { inter, extra and ortho, horizontal training plane. Top right:

performance of the HyperBF model in a simulated replica of this experiment. Bottom left and right: same as above,
except vertical training plane. Adapted from B�ultho� and Edelman, 1992.

training sequences was produced by letting the camera
oscillate with an amplitude of �15o around a �xed axis
(Fig. 5). Target test views were situated either on the
equator (on the 75o or on the 360o� 75o = 285o portion
of the great circle, called inter and extra conditions),
or on the meridian passing through one of the training
views (ortho condition; see Fig. 5).

The results of the generalization experiment, along
with those of its replica involving the HyperBF model,
appear in Figure 6. As expected, the subjects' gener-
alization ability was far from perfect. The mean error
rates for the inter, extra and ortho view types were
9:4%, 17:8% and 26:9%. Repeated experiments involving
the same subjects and stimuli, as well as control experi-
ments under a variety of conditions yielded an identical
pattern of error rates. The order of the mean error rates
was changed, however, when the training views lay in the
vertical instead of the horizontal plane. The means for
the inter, extra and ortho conditions were in that
case 17:9%, 35:1% and 21:7%.

The experimental results �t most closely the predic-
tions of the HyperBF scheme and contradict theories
that involve three-dimensional viewpoint-invariant mod-
els or viewpoint alignment models that do not allow for
errors in recognition. In particular, the di�erences in
generalization performance between the horizontal and
the vertical arrangements of training views can be ac-

commodated within the HyperBF framework by assign-
ing di�erent weights to the horizontal and the vertical
dimensions (equivalent to using non-radial basis func-
tions).

5.4 Generalization across deformations

In the last experiment reported in this section, we com-
pared the generalization of recognition to novel views
belonging to several di�erent categories: those obtained
from the original target object by rigid rotation, by
three-dimensional a�ne transformation, and by non-
uniformdeformation (Edelman and B�ultho�, 1990; Sklar
et al., 1993; Spectorov, 1993). The views in the rigid ro-
tation category were obtained by rotation around the X
axis (that is, in the sagittal plane), around the Y axis,
and in the image-plane. In the deformation category, the
methods were shear, stretch, quadratic stretch, and non-
uniform stretch, all in depth. Altogether, views obtained
through seven di�erent transformation and deformation
classes were tested.

From the experimental results it appears that the
degree of generalization exhibited by the human vi-
sual system is determined more by the amount of (two-
dimensional) deformation as measured in the image
plane (cf. Cutzu and Edelman, 1992) than by the direc-
tion and the distance between the novel and the train-
ing views in the abstract space of all views of the tar-
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Figure 7: Human performance in the recognition of ro-
tated and deformed objects. The subjects had to at-
tribute briey displayed static images of isolated objects
to one of two classes (17 subjects participated; data are
from 24 experimental sessions, which involved 5 di�er-
ent object pairs; for details, see Spectorov, 1993). The
four curves show mean error (miss) rate for view related
to the single training view by rotation around the X, Y,
and Z axes (the latter is image-plane rotation), and by
deformation along the X axis (data from four deforma-
tion methods, all of which produced similar results, are
collapsed for clarity). Note that both image-plane rota-
tion and deformation were easy, and elicited near-oor
error rate.

get object. The HyperBF scheme was recently shown
to produce a similar pattern of performance (Spectorov,
1993). More generally, such �ndings are consistent with
the conception of multiple-views object representations
as being exemplar-based, and consequently, recognition
performance showing sensitivity to variations in two-
dimensional image properties such as global shape, color,
or illumination (Wurm et al., 1993).

5.5 Interpretation of the experimental data:
support for a view interpolation theory of
recognition

The experimental �ndings reported above are incompati-
ble with theories of recognition that postulate viewpoint-
invariant representations. Such theories predict no
di�erences in recognition performance across di�erent
views of objects, and therefore cannot account either for
the canonical views phenomenon or for the limited gen-
eralization to novel views, without assuming that, for
some reason, certain views are assigned a special status.
Modifying the thesis of viewpoint-invariant representa-
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Figure 8: RBF model performance (measured by the
classi�cation threshold needed to achieve correct accep-
tance of all test views) in the recognition of rotated and
deformed objects (for details, see Spectorov, 1993). The
four curves are as in Figure 7. The wire-frame stimuli
were encoded by vectors of angles formed by the vari-
ous segments. Consequently, the image-plane rotation
(which leaves these angles invariant) was as easy for the
model as for the human subjects, but the deformations
elicited somewhat worse performance (the rotations in
depth were the most di�cult, as they were for the hu-
mans). A choice of features other than angles may bring
the performance of the model closer to that of humans.

tion to allow privileged views and a built-in limit on gen-
eralization greatly weakens it, by breaking the symmetry
that holds for truly viewpoint-invariant representations,
in which all views, including novel ones, are equivalent.

Part of the �ndings on viewpoint-dependent recog-
nition, including mental rotation and its disappearance
with practice, and the lack of transfer of the practice ef-
fects to novel orientations or to novel objects (Tarr, 1989;
Tarr and Pinker, 1989), can be accounted for in terms of
viewpoint alignment (Ullman, 1989). According to Ull-
man's (1989) alignment explanation, the visual system
represents objects by small sets of canonical views and
employs a variant of mental rotation to recognize objects
at attitudes other than the canonical ones. Furthermore,
practice causes more views to be stored, making response
times shorter and more uniform. At the same time, the
pattern of error rates across views, determined largely by
the second stage of the recognition process in which the
aligned model is compared to the input, remains stable
due to the absence of feedback to the subject.

This explanation, however, is not compatible with the
results of the generalization experiments (nor with Tarr's
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studies in which subjects received feedback about the
correctness of their responses), which, on the one hand,
show a marked and persistent dependency of error rate
(also observed in Tarr's studies) on the distance to the
training view for rigid rotations,5 and, on the other hand,
indicate that people are capable of generalization across
object deformations. Moreover, the viewpoint depen-
dency of the representations formed by subjects, mani-
fested in the limitation on generalization to novel views,
cannot be due exclusively to an absolute lack of three-
dimensional information in the stimuli, since the same
dependency of error rate on viewpoint was obtained (in
the depth-cues experiment) both in mono and stereo

trials.
In view of the experimental results discussed above,

theories that rely on fully three-dimensional viewpoint-
invariant representations appear to be poor models
of human performance, at least in tasks that require
subordinate-level recognition. A plausible alternative ac-
count of the experimental data assumes that object rep-
resentations involved in such tasks are inherently view-
point dependent. According to this account, a three-
dimensional object is represented by a collection of spe-
ci�c views, each of which is essentially an image-based
representation of the object as it is seen from a certain
viewpoint, augmented by limited depth information.6

The collection of stored views is structured, in the sense
that views that \belong" together (e.g., because they ap-
peared in close succession during previous exposure and
share some structural information in common) are more
closely associated with each other (Edelman and Wein-
shall, 1991; Perrett et al., 1989). To precipitate recogni-
tion, an input stimulus must bring the entire structure
to a certain minimal level of activity. This process of ac-
tivation may be mediated by a correlation-like operation
that compares the stimulus (possibly in parallel) with
each of the stored views, and activates the representa-
tion of that view in proportion to its similarity to the
input (Edelman, 1991b). Computationally, this method
of recognition is equivalent to an attempt to express the
input as an interpolation of the stored views (Poggio and
Edelman, 1990; Edelman and Weinshall, 1991), which is
muchmore likely to succeed if the input image is indeed a
legal view of the three-dimensional object represented by
the collection of stored views (Ullman and Basri, 1991).

6 What are the features of recognition?

Most of the psychophysical �ndings reported above have
been replicated by a computational model (Poggio and

5These �ndings also rule out the possibility that the in-
crease in the uniformity of response time over di�erent views,
caused by practice, is due to the formation of a viewpoint-
invariant representation of the target object.

6The basic limitation on the use of depth in recognition
stems from its representation in a viewpoint-dependent coor-
dinate frame (in Marr's terminology (Marr, 1982), such rep-
resentation would be called a 2 1

2
D-sketch). Another possible

limitation is expected in view of the recent �ndings regard-
ing the imperfections of the perception of three-dimensional
shape, as mediated by di�erent depth cues (B�ultho� and Mal-
lot, 1988).

Edelman, 1990) based on interpolation of stored two-
dimensional views (B�ultho� and Edelman, 1992). A
natural question arising at this point is how those two-
dimensional views are represented in the human visual
system. It is instructive to compare the di�erent pos-
sibilities that suggest themselves to the method of rep-
resentation used by the HyperBF network model. The
input to the model is a vector of measurements of certain
image parameters. In the simplest case, these parame-
ters are the image coordinates of primitive features such
as edge terminators or corners. While these features are
suitable for the class of thin tube-like objects used in
most of our experiments to date, they are clearly inad-
equate for the description of objects in which intensity
edges and, in particular, edges due to the occluding con-
tour, are of secondary importance. An example of an
object class that dictates a reconsideration of the fea-
ture issue appears in Figure 2. It should be noted that
amoeba-like stimuli yield the same pattern of results as
do the wire-like objects used throughout the experiments
reported above. These results, however, cannot be repli-
cated computationally without an in-depth study of the
feature extraction stage of recognition in human vision.
In this section we outline one possible approach to the
study of the features of recognition in human vision (see
Edelman, 1991a for more details).

The central tenet of this approach, supported by the
evidence presented in the preceding sections, is that
recognition normally requires neither three-dimensional
reconstruction of the stimulus, nor the maintenance of a
library of three-dimensional models of objects (Edelman
and Poggio, 1989). Instead, information su�cient for
recognition can be found in the two-dimensional image
locations of object features. The choice of features and
their complexity may vary between objects. For exam-
ple, a pineapple can be recognized by its characteristic
pattern of spiny scales. The main feature in this case is
textural and is distributed over the object's surface. In
comparison, the relevant features of a peanut are both its
texture and a characteristic outline (in a line drawing, a
round peanut can be confused with a golf ball). Finally,
a road vehicle can be recognized as such by the presence
of wheels (each of which may be considered a complex
feature), but for the drawing of a vehicle to be classi�ed,
e.g., as a car, simple additional features such as contour
elements and corners must be appropriately situated in
the image (presumably, in the vicinity of the locations
of corresponding features in the image of a prototypical
car).

The ensuing generic recognition scheme is based on
the idea of a hierarchy of image features, and is de-
signed to address the major issue that remains at this
point unresolved, namely, the capability of a recogni-
tion scheme based on interpolation among speci�c views
for viewpoint-invariant performance exhibited by human
subjects under certain circumstances (especially in tasks
requiring basic-level classi�cation, rather than the iden-
ti�cation of individual objects; see (Biederman, 1987)).
Evidence of viewpoint-invariant recognition has served
in the past as an argument against multiple-view repre-
sentation of objects. We propose that such evidence can
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Human Subjects RBF Model

Figure 9: Left: human performance in the recognition of rotated wire-like 3D objects (B�ultho� and Edelman, 1992).
Error rate of subjects trained on single view is plotted vs. distance between training and test views. Note poor
generalization across rotations in depth (curves marked by x; y), compared to rotation in the image plane (curve
marked by z; see text). Right: performance of the HyperBF network model (Poggio and Edelman, 1990; Edelman
and Poggio, 1992; B�ultho� and Edelman, 1992) in the same task.

be accommodated within the framework of multiple-view
representation by allowing for an appropriate encoding
of the stored views. In other words, we propose to cap-
ture the varying degree of viewpoint invariance found in
human recognition performance by endowing the model
with an extensive repertoire of feature detectors, whose
output (and not the raw input image) is fed into the
classi�cation stage (Edelman, 1991a).

Those of the detected features that are well-localized
in the image (e.g., polyhedral vertices, as mentioned
in the preceding section; see also Intrator et al., 1992)
would allow �ne distinctions among objects at the ex-
pense of relatively strong sensitivity to viewpoint (the
location of a corner in the projected image is highly de-
pendent on the object's attitude with respect to the ob-
server). On the other hand, the so-called non-accidental
features (Lowe, 1986; Biederman, 1987) o�er relative in-
sensitivity to viewpoint at the expense of reduced power
of discrimination among objects. An example of such a
feature is the presence of near-parallel lines in the im-
age, which is highly unlikely to be caused by an acci-
dent of a viewpoint, but at the same time only allows to
discriminate between objects that possess such parallel
lines and those that do not. Finally, \di�use" features
such as surface color or texture may support recognition
performance that is basically viewpoint-invariant and is
exact to the extent that the surface markings are dis-
tinctive for each object under consideration. It is impor-
tant to note that all three kinds of features | localized,
non-accidental, and di�use | can be detected by com-
putational mechanisms resembling receptive �elds, and
can be considered, therefore, as a natural extension of a
basis-function classi�cation network (Poggio and Edel-
man, 1990).

A concrete example of the potential tradeo� between
discrimination power and viewpoint invariance of a fea-
ture set is provided by recent experimental data (Edel-
man and B�ultho�, 1992a) shown in Figure 9. The plot on
the left suggests that humans recognize 3D wire-like ob-

jects nearly independently of their image-plane orienta-
tion (but not of the orientation in depth; cf. Figure 7,8).
A similar behavior is exhibited by a view-interpolation
model which includes lengths of segments between con-
nected vertices in the object representations (in addition
to the coordinates of individual vertices). This relative
insensitivity to rotation in the image plane is expected
to cause the model to be more prone to confuse objects
that have similar projected segment lengths, but di�er-
ent 3D structure. A complete invariance to image-plane
rotation could be achieved by encoding vertex angles.
For rotation in the image plane vertex angles stay con-
stant but the projected angles are deformed by rotations
in 3D.

Human Subjects
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Figure 10: Subjects trained on two �15� motion se-
quences, centered at �37:5� to the reference view were
tested on di�erent deformation types based on the ref-
erence view. The deformation levels were normalized
so the Level 4 is equivalent to the maximum amount of
2D vertex displacement possible with rotation in depth.
Average miss rate of eight subjects for 6 objects.
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Figure 11: The various deformation methods e�ect measurements in 3D (XYZ) or in the image plane (XY) in
di�erent ways. The 2D vertex angle (XY) resembles best the psychophysical data presented in Figure 10.

A similar comparison between image-plane and
rotation-in-depth may be found in the experiments re-
ported by Tarr (1989; see, Fig. 3). However, in contrast
to the results discussed above, subjects in these experi-
ments exhibited large e�ects of viewpoint for both image-
plane and in-depth rotations. One possible explanation
for the discrepancy between these experiments may be
the extent to which subjects relied on geometrically-
de�ned versus familiarity-de�ned views. In terms of
changes in image structure, all image-plane rotations are
equivalent (e.g., constitute a single qualitative or charac-
teristic view or aspect), and therefore may be undi�eren-
tiated with regard to multiple-views representations that
encode views solely on the basis of qualitative changes
in visible features.

However, Tarr's (1989) study intentionally manipu-
lated the frequency with which selected views appeared
to subjects (including views in the image-plane), thereby
biasing them towards di�erentiating between featurally-
equivalent image-plane rotations. Indeed, the fact that
most canonical views of familiar objects seem to have a
preferred orientation relative to gravitational upright, in-
dicates that familiarity with speci�c viewpoints, as well
as the presence of speci�c clusters of features, mediates
what constitutes a view.

In order to test which feature (e.g., vertex position,
vertex angle, segment direction, segment length, etc) is
most likely the distinguishing feature used by the visual
system in the recognition task, we compared recognition
performance for a number of 2D and 3D deformation
methods including rotation-in-depth, stretching, shear-
ing, and random deformations (Sklar et al., 1993). For
these experiments subjects �rst viewed a target object
rotating �15� about a reference view. They were then

asked to discriminate deformed versions of the target
object from distractor objects which have undergone the
same types and degrees of deformation. The results in
Figure 10 show that the error rate for rotation-in-depth
is clearly more pronounced than for the other deforma-
tion methods.

We then calculated how the di�erent deformation
methods and levels e�ect the following measurements:
(1) segment direction (XYZ) is a 3D direction which can
be only derived under stereoscopic display conditions;
(2) segment direction (XY) is the projected 3D direc-
tion on the image plane; (3) segment length (XY) is the
length of a wire segment measured in the image plane;
(4) vertex normal direction (XYZ) is again a 3D mea-
sure which could only be derived under perfect 3D view-
ing conditions; (5) vertex angle (XY) is the projected
angle measured in the image plane; (6) vertex order is
a more topological measure which describes the change
in top/bottom order of the vertices. A comparison with
the psychophysical deformation data in Figure 10 shows
that the vertex angle is the best 2D descriptor for hu-
man recognition performance of wire-like objects under
varying image deformations (Fig. 11).

7 General conclusions

The psychophysical results reviewed in this paper
present evidence that viewpoint-dependent representa-
tions and recognition processes play an important role in
human object recognition. In particular, given that most
studies have employed stimulus objects that share parts
and have some spatial relations in common, viewpoint
dependency is most strongly implicated in subordinate-
level recognition. However, one must be cautious not
to extend such conclusions to the more general assump-
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tion that viewpoint-dependent mechanisms are limited
to the subordinate-level. Rather, the framework we
have presented indicates that extreme viewpoint depen-
dence and extreme viewpoint invariance lie at two ends
of a continuum, with appropriate mechanisms and fea-
tures recruited according to task demands, context, and
the organization of visual memory. This conception of
recognition in humans leaves less room for exclusively
viewpoint-invariant theories of recognition, for instance,
Geon-Structural-Descriptions (Biederman, 1987; Hum-
mel and Biederman, 1992) in that a great deal of the
extant psychophysical data on object recognition in hu-
mans is expressly inconsistent with such accounts (Bar-
tram, 1974; B�ultho� and Edelman, 1992; Edelman and
B�ultho�, 1992b; Cave and Kosslyn, 1993; Humphrey and
Khan, 1992; Srinivas, 1993). Furthermore, the plausibil-
ity of such accounts is severely strained by their failure to
accommodate the more exible recognition mechanisms
we have proposed. Indeed, even to the extent that such
viewpoint-invariant theories are intended solely as expla-
nations of entry-level performance, they are hampered
by evidence for viewpoint-dependent patterns in naming
familiar common objects (Palmer, et. al., 1981) and by
their inability to provide both the stability and the sen-
sitivity necessary to account for entry-level organization
(cf., Marr and Nishihara, 1978).

A second important point to be drawn from the
work surveyed here is that modeling psychophysically
obtained response patterns permits us to \reverse-
engineer" the human visual system { an integral part
of our research e�ort. Insight gained through modeling
proves to be useful both for understanding experimental
results and for the planning of experiments that explore
further theoretical issues. In particular, the success of
a HyperBF model that relied on simple receptive-�eld-
like features in replicating nontrivial aspects of human
performance in recognition experiments (B�ultho� and
Edelman, 1992) indicates that even better results can be
obtained with more sophisticated feature-extraction and
learning techniques. The integrated psychophysical and
computational study of these issues has led to a number
of insights:

� Multiple-views. Psychophysical evidence indicates
that humans encode three-dimensional objects as
multiple viewpoint-speci�c representations that are
largely two-dimensional (but may include some
depth information as well).

� Normalization. Psychophysical evidence indicates
that subordinate-level recognition is achieved by
employing a time-consuming normalization process
to match objects seen in unfamiliar viewpoints to
familiar stored viewpoints. The role of such mech-
anisms in entry-level recognition is less clear, but is
more plausible than exclusively three-dimensional
viewpoint-invariant accounts of recognition.

� HyperBF Model and View Interpolation. Psy-
chophysical evidence in conjunction with compu-
tational simulations indicates that view interpola-
tion o�ers a plausible explanation for viewpoint-
dependent patterns of performance in terms of

both response times and error rates. Moreover,
this model o�ers an account of subtle aspects of
generalization performance inconsistent with other
viewpoint-dependent theories.

Our research program currently concentrates on the
issue of feature extraction for recognition, on perceptual
learning involved in the acquisition of object represen-
tations, and on the uni�cation of theories of recognition
spanning all levels of categorization. First, in model-
ing feature extraction in recognition, the identity and
the relative importance of features discovered by com-
putational learning models can be compared to a psy-
chophysical characterization of the features of recogni-
tion relied upon by human subjects. Second, to the ex-
tent that both feature extraction and classi�cation ex-
hibit considerable exibility, we are exploring the de-
gree to which both priors and environmentally deter-
mined factors constrain learning and representation in
human object recognition. Such factors include those
relevant to general recognition, for instance, common
feature sets, and those that di�er for di�erent classes
of objects, for instance, subsets of non-generic features
and restricted-class categorization methods. Finally, we
believe that the concept of features of recognition, of
varying complexities and degrees of spatial localization,
may o�er a uni�ed approach spanning the continuum of
subordinate-level to entry-level performance in human
object recognition.
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