19 research outputs found

    A revised diet matrix to improve the parameterization of a West Florida Shelf Ecopath model for understanding harmful algal bloom impacts

    Get PDF
    Harmful algal blooms (HABs) are a growing concern in the West Florida Shelf (WFS) region. An Ecopath with Ecosim (EwE) model of the WFS explicitly simulating HABs was previously developed to illuminate the potential impacts of blooms of the dinoflagellate Karenia brevis (colloquially referred to as “red tides”) on the WFS ecosystem. However, the diet matrix of the Ecopath component of this EwE model (referred to as “WFS-HAB Ecopath”) was based largely on sparse, cursory information and not on local survey data. Here, we revise the diet matrix of the WFS-HAB Ecopath model using predictions of a robust statistical model that incorporates local survey data and employs the Dirichlet distribution and maximum likelihood estimation. The relative impacts of both the revised diet matrix and red tide mortality scenarios on model structure are explored by comparing four alternative WFS-HAB Ecopath models: (i) the base model; (ii) a model employing the revised diet matrix; (iii) a model with elevated red tide mortality; and (iv) a model with both the revised diet matrix and elevated red tide mortality. Incorporating the revised diet matrix into the WFS-HAB Ecopath model had a relatively large impact on ecosystem structure (i.e., trophic organization, mortality rates, trophic interaction strengths, and omnivory). Elevated red tide mortality had virtually no impact on ecosystem structure aside from altering the contribution of fishing, natural, and red tide mortalities to the total mortality of functional groups; however, elevated red tide mortality might have meaningful implications in dynamic simulations, which should be explored in future studies. Collectively, results showed that incorporating the revised diet matrix into WFS-HAB Ecopath, which revealed a number of new predator-prey linkages, led to a more complex and interconnected food web. Specifically, prey items were generally consumed by a broader variety of predators, which contrasts with the base WFS-HAB Ecopath model where many prey, particularly juvenile fishes, were subjected to exceedingly high predation mortality rates from specific predators. The incorporation of the revised diet matrix into the WFS-HAB Ecopath model discussed herein is a fundamental step towards increasing the realism of trophic interactions in the model, which is particularly important as these trophic interactions define starting conditions for dynamic simulations.publishedVersio

    A mini ROV-based method for recovering marine instruments at depth.

    No full text
    Instruments are often deployed at depth for weeks to years for a variety of marine applications. In many cases, divers can be deployed to retrieve instruments, but divers are constrained by depth limitations and safety concerns. Acoustic release technology can also be employed but can add considerable expense and acoustic releases will at times fail. Here, we report a simple method that utilizes a commercially available mooring hook integrated with a mini remotely operated vehicle to attach lines to instruments deployed on the sea floor, which can then be winched to the surface. The mooring hook apparatus was tested in a pool setting and then used to retrieve acoustic telemetry receiver bases (50 kg) or fish traps (30-50 kg) from the northern Gulf of Mexico continental shelf at depths between 28 and 80 m. During 2013-2019, 539 retrievals (100% success rate) were made of receiver bases (n = 239) and traps (n = 300) on 30 sea days using this approach. This method could easily be applied to other types of instruments, or recovery and salvage of objects that are too deep for standard diving operations

    Producing distribution maps for informing ecosystem-based fisheries management using a comprehensive survey database and spatio-temporal models

    No full text
    Abstract Ecosystem-based fisheries-management (EBFM) is increasingly used in the United States (U.S.), including in the Gulf of Mexico (GOM). Producing distribution maps for marine organisms is a critical step in the implementation of EBFM. In particular, distribution maps are important inputs for many spatially-explicit ecosystem models, such as OSMOSE models, as well as for biophysical models used to predict annual recruitment anomalies due to oceanographic factors. In this study, we applied a recently proposed statistical modelling framework to produce distribution maps for: (i) younger juveniles (ages 0–1) of red snapper (Lutjanus campechanus), red grouper (Epinephelus morio), and gag (Mycteroperca microlepis), so as to be able to define the potential larval settlement areas of the three species in a biophysical model; and (ii) the functional groups and life stages represented in the OSMOSE model of the West Florida Shelf (“OSMOSE-WFS”). This statistical modelling framework consists of: (i) compiling a large database blending all of the encounter/non-encounter data of the GOM collected by the fisheries-independent and fisheries-dependent surveys using random sampling schemes, referred to as the “comprehensive survey database;” (ii) employing the comprehensive survey database to fit spatio-temporal binomial generalized linear mixed models (GLMMs) that integrate the confounding effects of survey and year; and (iii) using the predictions of the fitted spatio-temporal binomial GLMMs to generate distribution maps. This large endeavour allowed us to produce distribution maps for younger juveniles of red snapper, red grouper and gag and nearly all of the other functional groups and life stages represented in OSMOSE-WFS, at different seasons. Using Pearson residuals, the probabilities of encounter predicted by all spatio-temporal binomial GLMMs were demonstrated to be reasonable. Moreover, the results obtained for younger juvenile fish concur with the literature, provide additional insights into the spatial distribution patterns of these life stages, and highlight important future research avenues

    Progression of a Gulf of Mexico Food Web Supporting Atlantis Ecosystem Model Development

    No full text
    This article develops a marine food web matrix for the Gulf of Mexico (GOM) based on local stomach sampling and online diet information. Working at the level of functional groups, we fit diet information to a statistical model based on the Dirichlet distribution. This allows us to quantify likely contributions of prey to predators’ diets. Error ranges on these values reflect diet variability and data quality, and help in identifying functional groups that would benefit from additional sampling. We perform hierarchical cluster analysis to determine functional groups that have similar prey requirements, then produce a food web diagram representing the interactions between predators and prey. A meta-analysis using principle coordinate analysis allows us to compare this study’s diet matrix with ten other published GOM food webs and determine where variation in food web structure exists. We also compare our new food web to the diet matrix used by the Ainsworth et al. (2015) Atlantis ecosystem model, a strategic tool developed to assess ecosystem dynamics in the GOM. A hindcast from 1980 to 2010 using Atlantis shows an improved fit to observational data and reduced error in biomass projections using the revised diet information

    Changes in Reef Fish Community Structure Following the Deepwater Horizon Oil Spill

    Get PDF
    Large-scale anthropogenic disturbances can have direct and indirect effects on marine communities, with direct effects often taking the form of widespread injury or mortality and indirect effects manifesting as changes in food web structure. Here, we report a time series that captures both direct and indirect effects of the Deepwater Horizon Oil Spill (DWH) on northern Gulf of Mexico (nGoM) reef fish communities. We observed significant changes in community structure immediately following the DWH, with a 38% decline in species richness and 26% decline in Shannon-Weiner diversity. Initial shifts were driven by widespread declines across a range of trophic guilds, with subsequent recovery unevenly distributed among guilds and taxa. For example, densities of small demersal invertivores, small demersal browsers, generalist carnivores, and piscivores remained persistently low with little indication of recovery seven years after the DWH. Initial declines among these guilds occurred prior to the arrival of the now-widespread, invasive lionfish (Pterois spp.), but their lack of recovery suggests lionfish predation may be affecting recovery. Factors affecting persistently low densities of generalist carnivores and piscivores are not well understood but warrant further study given the myriad ecosystem services provided by nGoM reef fishes

    A revised diet matrix to improve the parameterization of a West Florida Shelf Ecopath model for understanding harmful algal bloom impacts

    Get PDF
    Harmful algal blooms (HABs) are a growing concern in the West Florida Shelf (WFS) region. An Ecopath with Ecosim (EwE) model of the WFS explicitly simulating HABs was previously developed to illuminate the potential impacts of blooms of the dinoflagellate Karenia brevis (colloquially referred to as “red tides”) on the WFS ecosystem. However, the diet matrix of the Ecopath component of this EwE model (referred to as “WFS-HAB Ecopath”) was based largely on sparse, cursory information and not on local survey data. Here, we revise the diet matrix of the WFS-HAB Ecopath model using predictions of a robust statistical model that incorporates local survey data and employs the Dirichlet distribution and maximum likelihood estimation. The relative impacts of both the revised diet matrix and red tide mortality scenarios on model structure are explored by comparing four alternative WFS-HAB Ecopath models: (i) the base model; (ii) a model employing the revised diet matrix; (iii) a model with elevated red tide mortality; and (iv) a model with both the revised diet matrix and elevated red tide mortality. Incorporating the revised diet matrix into the WFS-HAB Ecopath model had a relatively large impact on ecosystem structure (i.e., trophic organization, mortality rates, trophic interaction strengths, and omnivory). Elevated red tide mortality had virtually no impact on ecosystem structure aside from altering the contribution of fishing, natural, and red tide mortalities to the total mortality of functional groups; however, elevated red tide mortality might have meaningful implications in dynamic simulations, which should be explored in future studies. Collectively, results showed that incorporating the revised diet matrix into WFS-HAB Ecopath, which revealed a number of new predator-prey linkages, led to a more complex and interconnected food web. Specifically, prey items were generally consumed by a broader variety of predators, which contrasts with the base WFS-HAB Ecopath model where many prey, particularly juvenile fishes, were subjected to exceedingly high predation mortality rates from specific predators. The incorporation of the revised diet matrix into the WFS-HAB Ecopath model discussed herein is a fundamental step towards increasing the realism of trophic interactions in the model, which is particularly important as these trophic interactions define starting conditions for dynamic simulations

    Producing Distribution Maps for a Spatially-Explicit Ecosystem Model Using Large Monitoring and Environmental Databases and a Combination of Interpolation and Extrapolation

    No full text
    To be able to simulate spatial patterns of predator-prey interactions, many spatially-explicit ecosystem modeling platforms, including Atlantis, need to be provided with distribution maps defining the annual or seasonal spatial distributions of functional groups and life stages. We developed a methodology combining extrapolation and interpolation of the predictions made by statistical habitat models to produce distribution maps for the fish and invertebrates represented in the Atlantis model of the Gulf of Mexico (GOM) Large Marine Ecosystem (LME) (“Atlantis-GOM”). This methodology consists of: (1) compiling a large monitoring database, gathering all the fisheries-independent and fisheries-dependent data collected in the northern (U.S.) GOM since 2000; (2) compiling a large environmental database, storing all the environmental parameters known to influence the spatial distribution patterns of fish and invertebrates of the GOM; (3) fitting binomial generalized additive models (GAMs) to the large monitoring and environmental databases, and geostatistical binomial generalized linear mixed models (GLMMs) to the large monitoring database; and (4) employing GAM predictions to infer spatial distributions in the southern GOM, and GLMM predictions to infer spatial distributions in the U.S. GOM. Thus, our methodology allows for reasonable extrapolation in the southern GOM based on a large amount of monitoring and environmental data, and for interpolation in the U.S. GOM accurately reflecting the probability of encountering fish and invertebrates in that region. We used an iterative cross-validation procedure to validate GAMs. When a GAM did not pass the validation test, we employed a GAM for a related functional group/life stage to generate distribution maps for the southern GOM. In addition, no geostatistical GLMMs were fit for the functional groups and life stages whose depth, longitudinal and latitudinal ranges within the U.S. GOM are not entirely covered by the data from the large monitoring database; for those, only GAM predictions were employed to obtain distribution maps for Atlantis-GOM. Pearson residuals were computed to validate geostatistical binomial GLMMs. Ultimately, 53 annual maps and 64 seasonal maps (for 32 different functional groups/life stages) were produced for Atlantis-GOM. Our methodology could serve other world\u27s regions characterized by a large surface area, particularly LMEs bordered by several countries

    Changes in Reef Fish Community Structure Following the Deepwater Horizon Oil Spill

    No full text
    Large-scale anthropogenic disturbances can have direct and indirect effects on marine communities, with direct effects often taking the form of widespread injury or mortality and indirect effects manifesting as changes in food web structure. Here, we report a time series that captures both direct and indirect effects of the Deepwater Horizon Oil Spill (DWH) on northern Gulf of Mexico (nGoM) reef fish communities. We observed significant changes in community structure immediately following the DWH, with a 38% decline in species richness and 26% decline in Shannon-Weiner diversity. Initial shifts were driven by widespread declines across a range of trophic guilds, with subsequent recovery unevenly distributed among guilds and taxa. For example, densities of small demersal invertivores, small demersal browsers, generalist carnivores, and piscivores remained persistently low with little indication of recovery seven years after the DWH. Initial declines among these guilds occurred prior to the arrival of the now-widespread, invasive lionfish (Pterois spp.), but their lack of recovery suggests lionfish predation may be affecting recovery. Factors affecting persistently low densities of generalist carnivores and piscivores are not well understood but warrant further study given the myriad ecosystem services provided by nGoM reef fishes

    Producing Distribution Maps for a Spatially-Explicit Ecosystem Model Using Large Monitoring and Environmental Databases and a Combination of Interpolation and Extrapolation

    No full text
    To be able to simulate spatial patterns of predator-prey interactions, many spatially-explicit ecosystem modeling platforms, including Atlantis, need to be provided with distribution maps defining the annual or seasonal spatial distributions of functional groups and life stages. We developed a methodology combining extrapolation and interpolation of the predictions made by statistical habitat models to produce distribution maps for the fish and invertebrates represented in the Atlantis model of the Gulf of Mexico (GOM) Large Marine Ecosystem (LME) (“Atlantis-GOM”). This methodology consists of: (1) compiling a large monitoring database, gathering all the fisheries-independent and fisheries-dependent data collected in the northern (U.S.) GOM since 2000; (2) compiling a large environmental database, storing all the environmental parameters known to influence the spatial distribution patterns of fish and invertebrates of the GOM; (3) fitting binomial generalized additive models (GAMs) to the large monitoring and environmental databases, and geostatistical binomial generalized linear mixed models (GLMMs) to the large monitoring database; and (4) employing GAM predictions to infer spatial distributions in the southern GOM, and GLMM predictions to infer spatial distributions in the U.S. GOM. Thus, our methodology allows for reasonable extrapolation in the southern GOM based on a large amount of monitoring and environmental data, and for interpolation in the U.S. GOM accurately reflecting the probability of encountering fish and invertebrates in that region. We used an iterative cross-validation procedure to validate GAMs. When a GAM did not pass the validation test, we employed a GAM for a related functional group/life stage to generate distribution maps for the southern GOM. In addition, no geostatistical GLMMs were fit for the functional groups and life stages whose depth, longitudinal and latitudinal ranges within the U.S. GOM are not entirely covered by the data from the large monitoring database; for those, only GAM predictions were employed to obtain distribution maps for Atlantis-GOM. Pearson residuals were computed to validate geostatistical binomial GLMMs. Ultimately, 53 annual maps and 64 seasonal maps (for 32 different functional groups/life stages) were produced for Atlantis-GOM. Our methodology could serve other world\u27s regions characterized by a large surface area, particularly LMEs bordered by several countries

    The Utility of Stable and Radioisotopes in Fish Tissues as Biogeochemical Tracers of Marine Oil Spill Food Web Effects

    No full text
    Direct exposure to petroleum compounds was widely reported for a variety of taxa following the DWH. Evidence of exposure ranged from oiling of skin, shells, or feathers, depending on the taxa, to observation of ingested oil in small translucent, invertebrates, to biomarkers of petroleum compounds within an organism’s tissues, such as PAHs in the hepatopancreas of invertebrates or the liver of fishes, or metabolic products of PAH catabolism in the bile of various vertebrate taxa. Development of natural biogeochemical tracers to examine indirect effects, especially over long (months to years) time scales, can be much more problematic. In this chapter, we describe the utility of employing stable isotopes and radioisotopes to 1) examine whether food web effects can be inferred from shifts in stable isotope values measured in vertebrate taxa; 2) examine the assimilation and trophic transfer of petrocarbon in marine food webs; and, 3) serve as long-term biogeochemical tracers either of petrocarbon assimilation or trophic shifts that are indicative of food web effects of marine oil spills. Data and analyses are largely drawn from DWH-related studies but with broader implications to marine oil spills in general
    corecore