38 research outputs found

    SCB Dataset.xlsx

    No full text
    Clinical Data of multiple myeloma patients undergoing a stem cell boost</p

    Recent updates on drug abuse analyzed by neuroproteomics studies: Cocaine, Methamphetamine and MDMA

    No full text
    Currently, drug abuse and addiction represent a global public health concern with about 13.6 million people using illicit drugs in the USA alone. Substance abuse intervenes in normal brain functioning, causing alterations in memory, behavior and neuronal physiology. Although many studies have been conducted to elucidate the mode of action of different drugs, the heterogeneous modes of drug intake led to a complicated profile of drug-induced brain changes involving neurotoxicity and addiction. Given the complex interplay of genes and proteins in mediating these effects, neuroproteomics analysis has been considered among the methods of choice to complement what has already been discovered and to create targeted therapies. In this review, we will focus on three drugs, namely cocaine, methamphetamine (METH) and 3,4-methylenedioxy-N-methylamphetamine (MDMA). In the context of neuroproteomics, these drugs have been extensively studied by utilizing different experimental models, including primate and non-primate animals along with postmortem human samples. Even though there are many variations in the results, these drugs were shown to employ common pathways in eliciting their effects. Neuroproteomics analysis of these drugs has led to the identification of differentially expressed proteins involved in metabolism, oxidative stress, cell signaling, cytoskeleton, cell death and synaptic plasticity. Finally, this work will discuss recent findings from our laboratory by looking at a model of chronic methamphetamine abuse and its effect on different brain regions

    Metformin and Ara-a Effectively Suppress Brain Cancer by Targeting Cancer Stem/Progenitor Cells

    Get PDF
    Background: Gliomas and neuroblastomas pose a great health burden worldwide with a poor and moderate prognosis, respectively. Many studies have tried to find effective treatments for these primary malignant brain tumors. Of interest, the AMP-activated protein kinase (AMPK) pathway was found to be associated with tumorigenesis and tumor survival, leading to many studies on AMPK drugs, especially Metformin, and their potential role as anti-cancer treatments. Cancer stem cells (CSCs) are a small population of slowly-dividing, treatment-resistant, undifferentiated cancer cells that are being discovered in a multitude of cancers. They are thought to be responsible for replenishing the tumor with highly proliferative cells and increasing the risk of recurrence. Methods: Metformin and 9-β-d-Arabinofuranosyl Adenine (Ara-a) were used to study the role of the AMPK pathway in vitro on U251 (glioblastoma) and SHSY-5Y (neuroblastoma) cell lines.Results: We found that both drugs are able to decrease the survival of U251 and SH-SY5Y cell lines in a 2D as well as a 3D culture model. Metformin and Ara-a significantly decreased the invasive ability of these cancer cell lines. Treatment with these drugs decreased the sphere-forming units (SFU) of U251 cells, with Ara-a being more efficient, signifying the extinction of the CSC population. However, if treatment is withdrawn before all SFUs are extinguished, the CSCs regain some of their sphere-forming capabilities in the case of Metformin but not Ara-a treatment. Conclusion: Metformin and Ara-a have proved to be effective in the treatment of glioblastomas and neuroblastomas, in vitro, by targeting their cancer stem/progenitor cell population, which prevents recurrence

    Differences in Nanoparticle Uptake in Transplanted and Autochthonous Models of Pancreatic Cancer

    No full text
    © 2018 American Chemical Society. Human pancreatic ductal adenocarcinoma (PDAC) contains a distinctively dense stroma that limits the accessibility of anticancer drugs, contributing to its poor overall prognosis. Nanoparticles can enhance drug delivery and retention in pancreatic tumors and have been utilized clinically for their treatment. In preclinical studies, various mouse models differentially recapitulate the microenvironmental features of human PDAC. Here, we demonstrate that through utilization of different organic cosolvents and by doping of a homopolymer of poly(ϵ-caprolactone), a diblock copolymer composition of poly(ethylene oxide)-block-poly(ϵ-caprolactone) may be utilized to generate biodegradable and nanoscale micelles with different physical properties. Noninvasive optical imaging was employed to examine the pharmacology and biodistribution of these various nanoparticle formulations in both allografted and autochthonous mouse models of PDAC. In contrast to the results reported with transplanted tumors, spherical micelles as large as 300 nm in diameter were found to extravasate in the autochthonous model, reaching a distance of approximately 20 μm from the nearest tumor cell clusters. A lipophilic platinum(IV) prodrug of oxaliplatin was further able to achieve a ∼7-fold higher peak accumulation and a ∼50-fold increase in its retention half-life in pancreatic tumors when delivered with 100 nm long worm-like micelles as when compared to the free drug formulation of oxaliplatin. Through further engineering of nanoparticle properties, as well as by widespread adoption of the autochthonous tumor model for preclinical testing, future therapeutic formulations may further enhance the targeting and penetration of anticancer agents to improve survival outcomes in PDAC

    Correction: Characterization of the Kallikrein-Kinin System Post Chemical Neuronal Injury: An In Vitro Biochemical and Neuroproteomics Assessment.

    No full text
    Traumatic Brain Injury (TBI) is the result of a mechanical impact on the brain provoking mild, moderate or severe symptoms. It is acknowledged that TBI leads to apoptotic and necrotic cell death; however, the exact mechanism by which brain trauma leads to neural injury is not fully elucidated. Some studies have highlighted the pivotal role of the Kallikrein-Kinin System (KKS) in brain trauma but the results are still controversial and inconclusive. In this study, we investigated both the expression and the role of Bradykinin 1 and 2 receptors (B1R and B2R), in mediating neuronal injury under chemical neurotoxicity paradigm in PC12 cell lines. The neuronal cell line PC12 was treated with the apoptotic drug Staurospor-ine (STS) to induce cell death. Intracellular calcium release was evaluated by Fluo 4-AM staining and showed that inhibition of the B2R prevented calcium release following STS treatment. Differential analyses utilizing immunofluorescence, Western blot and Real-time Polymerase Chain Reaction revealed an upregulation of both bradykinin receptors occur-ring at 3h and 12h post-STS treatment, but with a higher induction of B2R compared to B1R. This implies that STS-mediated apoptosis in PC12 cells is mainly conducted throug

    The Effect of Chronic Methamphetamine Exposure on the Hippocampal and Olfactory Bulb Neuroproteomes of Rats

    No full text
    <div><p>Nowadays, drug abuse and addiction are serious public health problems in the USA. Methamphetamine (METH) is one of the most abused drugs and is known to cause brain damage after repeated exposure. In this paper, we conducted a neuroproteomic study to evaluate METH-induced brain protein dynamics, following a two-week chronic regimen of an escalating dose of METH exposure. Proteins were extracted from rat brain hippocampal and olfactory bulb tissues and subjected to liquid chromatography-mass spectrometry (LC-MS/MS) analysis. Both shotgun and targeted proteomic analysis were performed. Protein quantification was initially based on comparing the spectral counts between METH exposed animals and their control counterparts. Quantitative differences were further confirmed through multiple reaction monitoring (MRM) LC-MS/MS experiments. According to the quantitative results, the expression of 18 proteins (11 in the hippocampus and 7 in the olfactory bulb) underwent a significant alteration as a result of exposing rats to METH. 13 of these proteins were up-regulated after METH exposure while 5 were down-regulated. The altered proteins belonging to different structural and functional families were involved in processes such as cell death, inflammation, oxidation, and apoptosis.</p></div

    Gene ontology of METH-induced altered proteins.

    No full text
    <p>(a) Genes profile protein class of METH-induced altered proteins. (b) Genes profile molecular function of METH-induced altered proteins. (c) Genes profile biological process of METH-induced altered proteins.</p
    corecore