20 research outputs found

    Real-time Monocular Object SLAM

    Get PDF
    We present a real-time object-based SLAM system that leverages the largest object database to date. Our approach comprises two main components: 1) a monocular SLAM algorithm that exploits object rigidity constraints to improve the map and find its real scale, and 2) a novel object recognition algorithm based on bags of binary words, which provides live detections with a database of 500 3D objects. The two components work together and benefit each other: the SLAM algorithm accumulates information from the observations of the objects, anchors object features to especial map landmarks and sets constrains on the optimization. At the same time, objects partially or fully located within the map are used as a prior to guide the recognition algorithm, achieving higher recall. We evaluate our proposal on five real environments showing improvements on the accuracy of the map and efficiency with respect to other state-of-the-art techniques

    Underwater slam for manmade environments

    Get PDF

    LightDepth: Single-View Depth Self-Supervision from Illumination Decline

    Full text link
    Single-view depth estimation can be remarkably effective if there is enough ground-truth depth data for supervised training. However, there are scenarios, especially in medicine in the case of endoscopies, where such data cannot be obtained. In such cases, multi-view self-supervision and synthetic-to-real transfer serve as alternative approaches, however, with a considerable performance reduction in comparison to supervised case. Instead, we propose a single-view self-supervised method that achieves a performance similar to the supervised case. In some medical devices, such as endoscopes, the camera and light sources are co-located at a small distance from the target surfaces. Thus, we can exploit that, for any given albedo and surface orientation, pixel brightness is inversely proportional to the square of the distance to the surface, providing a strong single-view self-supervisory signal. In our experiments, our self-supervised models deliver accuracies comparable to those of fully supervised ones, while being applicable without depth ground-truth data

    An innovative quick solidifying technique for the forensic investigation of brain circulation using addition silicones

    Get PDF
    Post-mortem study of the brain is extremely relevant to medico-legal autopsies. However, it can be difficult to handle due to its fragility. This article presents a study on the development of an arterial solidifying technique that can be applied to analyze arterial circulation, consequently easing the handling and later diagnosis of diseases in this anatomical site. Vinylpolysiloxane silicone is introduced into the internal carotid arteries until it completely fills the arterial tree, creating a detailed model of the arterial's internal anatomy. This technique is fast, easy to apply and requires no previous tissue fixation. In addition, it allows for further toxicological and pathological tests. In conclusion, this technique represents a simple, sensitive and efficient method to employ in conventional autopsies, which can help in the diagnosis of death

    Robust mapping and localization in indoor environments using sonar data

    No full text
    In this paper we describe a new technique for the creation of featurebased stochastic maps using standard Polaroid sonar sensors. The fundamental contributions of our proposal are: (1) a perceptual grouping process that permits the robust identification and localization of environmental features, such as straight segments and corners, from the sparse and noisy sonar data; (2) a map joining technique that allows the system to build a sequence of independent limited-size stochastic maps and join them in a globally consistent way; (3) a robust mechanism to determine which features in a stochastic map correspond to the same environment feature, allowing the system to update the stochastic map accordingly, and perform tasks such as revisiting and loop closing. We demonstrate the practicality of this approach by building a geometric map of a medium size, real indoor environment, with several people moving around the robot. Maps built from laser data for the same experiment are provided for comparison. Key word

    Tardós, “Mapping large loops with a single hand-held camera

    No full text
    Abstract — This paper 1 presents a method for Simultaneous Localization and Mapping (SLAM) relying on a monocular camera as the only sensor which is able to build outdoor, closedloop maps much larger than previously achieved with such input. Our system, based on the Hierarchical Map approach [1], builds independent local maps in real-time using the EKF-SLAM technique and the inverse depth representation proposed in [2]. The main novelty in the local mapping process is the use of a data association technique that greatly improves its robustness in dynamic and complex environments. A new visual map matching algorithm stitches these maps together and is able to detect large loops automatically, taking into account the unobservability of scale intrinsic to pure monocular SLAM. The loop closing constraint is applied at the upper level of the Hierarchical Map in near real-time. We present experimental results demonstrating monocular SLAM as a human carries a camera over long walked trajectories in outdoor areas with people and other clutter, even in the more difficult case of forward-looking camera, and show the closing of loops of several hundred meters. I
    corecore