96 research outputs found

    Seasonal variability in silicate weathering signatures recorded by Li isotopes in cave drip-waters

    Get PDF
    Silicate weathering is a critical process in Earth’s carbon cycle, but the fundamental controls on weathering are poorly understood and its response to future climate change is uncertain. In particular, the potential for changes in seasonality or extreme weather events to control silicate weathering rates or mechanisms has been little studied. Here, we use lithium (Li) isotope measurements in bimonthly sampled drip-waters from two caves in the Yorkshire Dales (U.K.) to assess the response of silicate weathering processes to changes in temperature and hydrology over seasonal timescales. While the caves are contained in limestone bedrock, the drip-water Li isotope signal predominantly reflects silicate weathering of the overlying soils that are dominated by glacial till

    Self-stresses and Crack Formation by Particle Swelling in Cohesive Granular Media

    Full text link
    We present a molecular dynamics study of force patterns, tensile strength and crack formation in a cohesive granular model where the particles are subjected to swelling or shrinkage gradients. Non-uniform particle size change generates self-equilibrated forces that lead to crack initiation as soon as strongest tensile contacts begin to fail. We find that the coarse-grained stresses are correctly predicted by an elastic model that incorporates particle size change as metric evolution. The tensile strength is found to be well below the theoretical strength as a result of inhomogeneous force transmission in granular media. The cracks propagate either inward from the edge upon shrinkage and outward from the center upon swelling

    Surface Affinity of the Hydronium Ion: The Effective Fragment Potential and Umbrella Sampling

    Get PDF
    The surface affinity of the hydronium ion in water is investigated with umbrella sampling and classical molecular dynamics simulations, in which the system is described with the effective fragment potential (EFP). The solvated hydronium ion is also explored using second order perturbation theory for the hydronium ion and the empirical TIP5P potential for the waters. Umbrella sampling is used to analyze the surface affinity of the hydronium ion, varying the number of solvent water molecules from 32 to 256. Umbrella sampling with the EFP method predicts the hydronium ion to most probably lie about halfway between the center and edge of the water cluster, independent of the cluster size. Umbrella sampling using MP2 for the hydronium ion and TIP5P for the solvating waters predicts that the solvated proton most probably lies about 0.5–2.0 Å from the edge of the water cluster independent of the cluster size

    Response time variability and response inhibition predict affective problems in adolescent girls, not in boys: the TRAILS study

    Get PDF
    The present study examines the relationship between neurocognitive functioning and affective problems through adolescence, in a cross-sectional and longitudinal perspective. Baseline response speed, response speed variability, response inhibition, attentional flexibility and working memory were assessed in a cohort of 2,179 adolescents (age 10–12 years) from the TRacking Adolescents’ Individual Lives Survey (TRAILS). Affective problems were measured with the DSM-oriented Affective Problems scale of the Youth Self Report at wave 1 (baseline assessment), wave 2 (after 2.5 years) and wave 3 (after 5 years). Cross-sectionally, baseline response speed, response time variability, response inhibition and working memory were associated with baseline affective problems in girls, but not in boys. Longitudinally, enhanced response time variability predicted affective problems after 2.5 and 5 years in girls, but not in boys. Decreased response inhibition predicted affective problems after 5 years follow-up in girls, and again not in boys. The results are discussed in light of recent insights in gender differences in adolescence and state–trait issues in depression

    Mass Spectrometric Sampling of a Liquid Surface by Nanoliter Droplet Generation from Bursting Bubbles and Focused Acoustic Pulses: Application to Studies of Interfacial Chemistry

    Full text link

    Efficient and Accurate Fragmentation Methods

    Full text link
    Three novel fragmentation methods that are available in the electronic structure program GAMESS (general atomic and molecular electronic structure system) are discussed in this Account. The fragment molecular orbital (FMO) method can be combined with any electronic structure method to perform accurate calculations on large molecular species with no reliance on capping atoms or empirical parameters. The FMO method is highly scalable and can take advantage of massively parallel computer systems. For example, the method has been shown to scale nearly linearly on up to 131 000 processor cores for calculations on large water clusters. There have been many applications of the FMO method to large molecular clusters, to biomolecules (e.g., proteins), and to materials that are used as heterogeneous catalysts. The effective fragment potential (EFP) method is a model potential approach that is fully derived from first principles and has no empirically fitted parameters. Consequently, an EFP can be generated for any molecule by a simple preparatory GAMESS calculation. The EFP method provides accurate descriptions of all types of intermolecular interactions, including Coulombic interactions, polarization/induction, exchange repulsion, dispersion, and charge transfer. The EFP method has been applied successfully to the study of liquid water, π-stacking in substituted benzenes and in DNA base pairs, solvent effects on positive and negative ions, electronic spectra and dynamics, non-adiabatic phenomena in electronic excited states, and nonlinear excited state properties. The effective fragment molecular orbital (EFMO) method is a merger of the FMO and EFP methods, in which interfragment interactions are described by the EFP potential, rather than the less accurate electrostatic potential. The use of EFP in this manner facilitates the use of a smaller value for the distance cut-off (Rcut). Rcut determines the distance at which EFP interactions replace fully quantum mechanical calculations on fragment–fragment (dimer) interactions. The EFMO method is both more accurate and more computationally efficient than the most commonly used FMO implementation (FMO2), in which all dimers are explicitly included in the calculation. While the FMO2 method itself does not incorporate three-body interactions, such interactions are included in the EFMO method via the EFP self-consistent induction term. Several applications (ranging from clusters to proteins) of the three methods are discussed to demonstrate their efficacy. The EFMO method will be especially exciting once the analytic gradients have been completed, because this will allow geometry optimizations, the prediction of vibrational spectra, reaction path following, and molecular dynamics simulations using the method
    corecore