223 research outputs found

    The influence of the dechanneling process on the photon emission by an ultra-relativistc positron channeling in a periodically bent crystal

    Full text link
    We investigate, both analytically and numerically, the influence of the dechanneling process on the parameters of undulator radiation generated by ultra-relativistic positron channelling along a crystal plane, which is periodically bent. The bending might be due either to the propagation of a transverse acoustic wave through the crystal, or due to the static strain as it occurs in superlattices. In either case the periodically bent crystal serves as an undulator which allows to generate X-ray and gamma-radiation. We propose the scheme for accurate quantitative treatment of the radiation in presence of the dechanneling. The scheme includes (i) the analytic expression for spectral-angular distribution which contains, as a parameter, the dechanneling length, (ii) the simulation procedure of the dechanneling process of a positron in periodically bent crystals. Using these we calculate the dechanneling lengths of 5 GeV positrons channeling in Si, Ge and W crystals, and the spectral-angular and spectral distributions of the undulator over broad ranges of the photons. The calculations are performed for various parameters of the channel bending.Comment: published in J. Phys. G: Nucl. Part. Phys. 27 (2001) 95-125, http://www.iop.or

    Radiation of photons in process of charge particle volume reflection in bent single crystal

    Full text link
    New type of radiation in crystals is predicted and investigated in computer simulation. It is shown that process of volume reflection of electrons and positrons in bent crystals is accomplished with high-power radiation of photons. Volume reflection radiation has intensity comparable with known channeling radiation, but it is less sensitive to entrance angle and sign of charge of a particle. Simulated spectra of radiation power are presented for 10 GeV and 200GeV particles.Comment: Latex, 8 pages, 4 fig

    First observation of the deflection of a 33 TeV Pb ion beam in a bent silicon crystal

    Get PDF
    For the first time, the deflection of an ultra-relativistic, fully stripped Pb82+ ion beam in a bent silicon crystal has been observed. The ions were provided by the CERN-SPS in the H4 beam at a momentum of 400 GeV/c per unit of charge. A 60 mm long silicon crystal, bent over 50 mm to give a 4 mrad deflection angle, was used in this experiment. The measured Pb ion deflection efficiency is comparable to the one obtained with protons at an equivalent ratio of momentum per charge, and is found to be about 15\% for a beam with a divergence of 35 microradians (FWHM). The interaction rate observed in a background counter is found to drop when the crystal is well aligned with the beam. This corroborates further the channeling model, which predicts that channeled ions are steered away from regions of high electron densities as well as the nuclei in the crystal

    Total spectrum of photon emission by an ultra-relativistic positron channeling in a periodically bent crystal

    Get PDF
    We present the results of numerical calculations of the channelling and undulator radiation generated by an ultra-relativistic positron channelling along a crystal plane, which is periodically bent. The bending might be due either to the propagation of a transverse acoustic wave through the crystal, or due to the static strain as it occurs in superlattices. The periodically bent crystal serves as an undulator. We investigate the dependence of the intensities of both the ordinary channelling and the undulator radiations on the parameters of the periodically bent channel with simultaneous account for the dechannelling effect of the positrons. We demonstrate that there is a range of parameters in which the undulator radiation dominates over the channelling one and the characteristic frequencies of both types of radiation are well separated. This result is important, because the undulator radiation can be used to create a tunable source of X-ray and gamma-radiation.Comment: published in J. Phys. G: Nucl. Part. Phys. 26 (2000) L87-L95, http://www.iop.org ; 12 pages, 4 figures, LaTe

    The UA9 experimental layout

    Full text link
    The UA9 experimental equipment was installed in the CERN-SPS in March '09 with the aim of investigating crystal assisted collimation in coasting mode. Its basic layout comprises silicon bent crystals acting as primary collimators mounted inside two vacuum vessels. A movable 60 cm long block of tungsten located downstream at about 90 degrees phase advance intercepts the deflected beam. Scintillators, Gas Electron Multiplier chambers and other beam loss monitors measure nuclear loss rates induced by the interaction of the beam halo in the crystal. Roman pots are installed in the path of the deflected particles and are equipped with a Medipix detector to reconstruct the transverse distribution of the impinging beam. Finally UA9 takes advantage of an LHC-collimator prototype installed close to the Roman pot to help in setting the beam conditions and to analyze the efficiency to deflect the beam. This paper describes in details the hardware installed to study the crystal collimation during 2010.Comment: 15pages, 11 figure, submitted to JINS

    Deflection and extraction of Pb ions up to 33 TeV/c by a bent silicon crystal

    Get PDF
    The first results from an experiment to deflect a beam of fully stripped, ulta-relativistic Pb ions of 400 GeV/c per unit of charge, equivalent to 33 TeV/c, by means of a bent crystal are reported. Deflection efficiencies are as high as 14%, in agreement with theoretical predictions. In a second experiment a bent crsytal was used to extract 270 GeV/c per charge Pb82+ (22 TeV/c) ions from a coasting beam in the CERN-SPS, and a high extraction efficiency of up to 10% was found. These represent the first measurements to demonstrate applications of bent crystals in high energy heavy ion beams

    High-efficiency deflection of high energy protons due to channeling along the (110) axis of a bent silicon crystal

    Get PDF
    A deflection efficiency of about 61% was observed for 400 GeV/c protons due to channeling, most strongly along the 〈110〉 axis of a bent silicon crystal. It is comparable with the deflection efficiency in planar channeling and considerably larger than in the case of the 〈111〉 axis. The measured probability of inelastic nuclear interactions of protons in channeling along the 〈110〉 axis is only about 10% of its amorphous level whereas in channeling along the (110) planes it is about 25%. High efficiency deflection and small beam losses make this axial orientation of a silicon crystal a useful tool for the beam steering of high energy charged particles

    Experimental study of the radiation emitted by 180-GeV/c electrons and positrons volume-reflected in a bent crystal

    Get PDF
    The radiation emitted by 180-GeV/c volume-reflected electrons and positrons impinging on a bent crystal has been measured by the H8RD22 Collaboration on the H8 beamline at the CERN SPS. A dedicated spectrometer has been developed to measure high-energy photon spectra (up to similar to 100 GeV) under volume reflection: photon and charged particle beams have been separated by a bending magnet and leptons were detected and tagged by microstrip silicon detectors and a Pb-scintillator sampling calorimeter. A comparison between the experimental and analytical data for the amorphous and volume-reflection cases is presented and the differences are discussed
    corecore