14 research outputs found

    Evaluation of thin film adhesion to compliant substrate by the analysis of progressive buckling in fragmentation test

    Get PDF
    The interface toughness of a thin coating/compliant substrate system is estimated based on the evolution of coating buckle patterns in the fragmentation test. The linear density of coating buckles as a function of applied strain is determined experimentally for a SiOx coating deposited on a polyethylene terephthalate film. A three-dimensional non-linear finite element model is developed to simulate the process of buckle formation in a single narrow coating strip. The elastic energy released during buckling-driven delamination is obtained from the energy balance in the system before and after the buckling event. Both the interface adhesion and the total energy release rate, which includes the plastic dissipation in the substrate during debonding, are evaluated. The apparent interfacial toughness, equal to 15 J/m2 at the onset of buckling, is found to increase with strain. This is tentatively explained by the probabilistic features of the buckle accumulation process, reflected also in the random locations of buckles evolving towards a log-normal distribution of buckle spacings at high strains

    Modelling of the fracture toughness anisotropy in fiber reinforced concrete

    Get PDF
    Steel fiber reinforced concrete is potentially very promising material with unique properties, which currently is widely used in some applications, such as floors and concrete pavements. However, lack of robust and reliable models of fiber reinforced concrete fracture limits its application as structural material. In this work a numerical model is proposed for predicting the crack growth in fiber reinforced concrete. The mixing of the steel fibers with the concrete usually creates nonuniform fibers distribution with more fibers oriented in horizontal direction, than in vertical. Simple numerical models of fiber reinforced concrete require a priori knowledge of the crack growth direction in order to take into account bridging action of the fibers, which depends on the fibers orientation. In proposed model user defined elements are used to calculate the bridging force during the course of the analysis when the crack starts to grow. Cohesive elements were used to model the crack propagation in the concrete matrix. In cohesive zone model the cohesive elements are embedded between all solid elements to simulate the arbitrary crack path. The bridging effect of the fibers are modeled as nonlinear springs, where the stiffness of the springs is defined from experimentally measured pull-out force and the angle between the fiber and crack opening direction

    Wpływ parametrów spoiny klejowej na pracę drewna wzmocnionego taśmą CFRP - analiza numeryczna

    No full text

    Analysis of thin film cracking and buckling on compliant substrate by fragmentation test

    No full text
    Application of coating fragmentation test for determination of coating properties is considered. A probabilistic model of coating fragmentation under uniaxial tensile loading is applied for coating and interface property identification of thin brittle coating/polymer substrate system. A finite element model is developed to simulate the process of buckle formation in coating strips during fragmentation test. The measured buckle geometry parameters and buckle density evolution as a function of the applied strain is used to estimate the interface toughness
    corecore