203 research outputs found

    2-Sulfoethylammonium trifluoromethanesulfonate as an Ionic Liquid for High Temperature PEM Fuel Cells

    Get PDF
    2-Sulfoethylammonium trifluoromethanesulfonate ([2-Sea+][TfO−]) represents a novel class of proton-conducting ionic liquids (PILs) based on aminoalkylsulfonic acids. The fundamental suitability of [2-Sea+][TfO−] for application as a protic electrolyte in high temperature PEM fuel cells (HT-PEFCs) was investigated up to a temperature of 130°C. A comparison was made against a state-of-the-art electrolyte, phosphoric acid. [2-Sea+][TfO−] is electrochemically and thermally stable up to 140°C. The specific conductivity of 95 wt% [2-Sea+][TfO−] aqueous solution at 130°C is ≈20 times lower compared to 95 wt% H3PO4. The strong coupling of ion transport and viscous flow suggests a vehicular ion (proton) transport in [2-Sea+][TfO−]. 95 wt% [2-Sea+][TfO−] shows superior kinetics in terms of oxygen reduction reaction (ORR) on polycrystalline Pt compared to 95 wt% H3PO4 at temperatures greater than 90°C in a fuel cell-applicable potential range. Double layer capacitances suggest a complex double layer structure, including adsorbed [2-Sea+][TfO−] and water, as well as intermediates of oxygen reduction and Pt oxidation. Potential and temperature-dependent ORR kinetics in the presence of 95 wt% [2-Sea+][TfO−] yield different Tafel slopes (b = 82–139 mV) and symmetry factors (β = 0.46–0.96), indicating changes in surface coverages of the adsorbed species and possibly also a change in the reaction mechanism

    Correlation effects during liquid infiltration into hydrophobic nanoporous mediums

    Full text link
    Correlation effects arising during liquid infiltration into hydrophobic porous medium are considered. On the basis of these effects a mechanism of energy absorption at filling porous medium by nonwetting liquid is suggested. In accordance with this mechanism, the absorption of mechanical energy is a result expenditure of energy for the formation of menisci in the pores on the shell of the infinite cluster and expenditure of energy for the formation of liquid-porous medium interface in the pores belonging to the infinite cluster of filled pores. It was found that in dependences on the porosity and, consequently, in dependences on the number of filled pores neighbors, the thermal effect of filling can be either positive or negative and the cycle of infiltration-defiltration can be closed with full outflow of liquid. It can occur under certain relation between percolation properties of porous medium and the energy characteristics of the liquid-porous medium interface and the liquid-gas interface. It is shown that a consecutive account of these correlation effects and percolation properties of the pores space during infiltration allow to describe all experimental data under discussion

    Nonlinear dynamics of magnetohydrodynamic flows of heavy fluid over an arbitrary surface in shallow water approximation

    Full text link
    The magnetohydrodynamic equations system for heavy fluid over an arbitrary surface in shallow water approximation is studied in the present paper. It is shown that simple wave solutions exist only for underlying surfaces that are slopes of constant inclination. All self-similar discontinuous and continuous solutions are found. The exact explicit solutions of initial discontinuity decay problem over a flat plane and a slope are found. It is shown that the initial discontinuity decay solution is represented by one of five possible wave configurations. For each configuration the necessary and sufficient conditions for its realization are found. The change of dependent and independent variables transforming the initial equations over a slope to those over a flat plane is found.Comment: 43 pages, submitted to Theoretical and Computational Fluid Dynamic

    Data Reduction and Error Analysis for the Physical Sciences

    Get PDF
    ABSTRACT Polycrystalline thin films (PTF) of p-WSe2, p-WS2, and p-MoSe2 have been prepared and characterized with respect to their photoelectrochemical properties, p-WS2 showed the highest open-circuit photovoltages and the highest conversion efficiencies in various redox couples. In addition, the band structure of all the films has been determined experimentally and compared to those reported for single crystals. Over the last two decades a great deal of interest has developed in the area of photoelectrochemistry, particularly in the application of photoelectrochemical systems to the problem of solar energy conversion and storage. The interest is to develop new energy sources to supplement and eventually replace fossil fuels. The first photoelectrochemical experiment was performed in 1839 by Becquerel (1), who demonstrated that a voltage and current are generated when a silver chloride electrode, immersed in an electrolytic solution and connected to a counterelectrode, is illuminated. Although the concept of a semiconductor did not exist at that time, it is now clear that the electrode which Becquerel used had semiconducting properties. In 1955, Brattain and Garett (2) used germanium as the first semiconductor electrode in photoelectrochemistry. Since then, the knowledge of semiconductors has grown steadily. Fujishima and Honda (3) were the first to point out the potential application of photoelectrochemical systems for solar energy conversion and storage. They demonstrated that the photo-oxidation of water to 02 was possible by utilizing an n-type semiconducting titanium dioxide photoanode. Since then, there has been a large and rapidly growing international interest in the study of photoelectrochemistry of semiconductors (4). The effective use of solar energy in photovoltaic or photoelectrochemical applications depends in part on the development of materials that can show high conversion efficiencies and long-term stability under operation. In ad-*Electrochemical Society Active Member. **Electrochemical Society Student Member. dition, the desirable materials should have a bandgap that closely matches the solar spectrum and be made of readily available and inexpensive materials. We have focused our attention on the transition metal dichalcogenides (e.g., WSe2, WS2, MoSe2, and others), also known as layered or d-d semiconductors. Tributsch's (5, 6) pioneering work on the use of these materials has stimulated intensive research in this area, and single Crystals of a number of materials have been studied extensively in both aqueous and nonaqueous solvents and in photovoltaic and photoelectrosynthetic cells. The advantages of using these materials are that they have bandgaps (1.1-1.6 eV) that closely match the solar spectrum and exhibit high conversion efficiencies as single crystals. In addition, they can achieve long-term stability due to the fact that the transitions are localized in the nonbonding d orbitals of the metal. These materials consist of metal dichalcogenide sandwiches (e.g., Se-W-Se) held together by van der Waals forces. The fact that there is strong covalent bonding within the layers, but only weak interactions between layers, makes these materials highly anisotropic in their properties. For example, the surface parallel to the C axis (IIC) is more conducting than the surface perpendicular to the C axis (• Therefore, edges and surface imperfections on the surface parallel to the C axis act as efficient recombination centers for photogenerated carriers or products (7

    Modified carbon-containing electrodes in stripping voltammetry of metals

    Full text link

    Scrub typhus ecology: a systematic review of Orientia in vectors and hosts

    Get PDF
    Abstract Scrub typhus, caused by Orientia tsutsugamushi, is an important and neglected vector-borne zoonotic disease with an expanding known distribution. The ecology of the disease is complex and poorly understood, impairing discussion of public health interventions. To highlight what we know and the themes of our ignorance, we conducted a systematic review of all studies investigating the pathogen in vectors and non-human hosts. A total of 276 articles in 7 languages were included, with 793 study sites across 30 countries. There was no time restriction for article inclusion, with the oldest published in 1924. Seventy-six potential vector species and 234 vertebrate host species were tested, accounting for over one million trombiculid mites (‘chiggers’) and 83,000 vertebrates. The proportion of O. tsutsugamushi positivity was recorded for different categories of laboratory test and host species. Vector and host collection sites were geocoded and mapped. Ecological data associated with these sites were summarised. A further 145 articles encompassing general themes of scrub typhus ecology were reviewed. These topics range from the life-cycle to transmission, habitats, seasonality and human risks. Important gaps in our understanding are highlighted together with possible tools to begin to unravel these. Many of the data reported are highly variable and inconsistent and minimum data reporting standards are proposed. With more recent reports of human Orientia sp. infection in the Middle East and South America and enormous advances in research technology over recent decades, this comprehensive review provides a detailed summary of work investigating this pathogen in vectors and non-human hosts and updates current understanding of the complex ecology of scrub typhus. A better understanding of scrub typhus ecology has important relevance to ongoing research into improving diagnostics, developing vaccines and identifying useful public health interventions to reduce the burden of the disease.</jats:p

    Nucleation and Growth of Oriented Ceramic Films onto Organic Interfaces

    No full text
    corecore