1,155 research outputs found
K -> pion Semileptonic Form Factors from Two-Flavor Lattice QCD
We present new lattice results of the K -> pion semileptonic form factors
obtained from simulations with two flavors of dynamical twisted-mass fermions,
using pion masses as light as 260 MeV. Our main result is f+(0) = 0.9560 (84),
which, combined with the latest experimental data for Kl3 decays, leads to
|V_{us}| = 0.2267 (5)_exp (20)_f+(0). Using the PDG(2008) determinations of
|Vud| and |Vub| our result implies for the unitarity relation |Vud|**2 +
|Vus|**2 + |Vub|**2 = 1.0004 (15). For the O(p**6) term of the chiral expansion
of f+(0) we get Df = f+(0) - 1 - f2 = -0.0214 (84).Comment: 4 pages, 4 figures, 1 table, revte
Impact of physical activity on response to stress in people aged 65 and over during COVID-19 pandemic lockdown
Background: The outbreak of the COVID-19 pandemic has negatively affected the lives of many people. In particular, restrictions of physical activity (PA) due to pandemic-related lockdown have impacted their psychological status. The aim of this work was to investigate the relationship between PA habits, before the pandemic and during the lockdown, and responses to stress due to home isolation during the lockdown, in older people. Methods: To this aim, an online survey addressed to people aged 65 years and over was conducted during the first pandemic wave in Italy (Study 1). To explore the effect of PA restrictions on responses to stress over time, the survey was replicated during the second wave (Study 2). A group of 72 and 43 participants, from 65 to 88 years, completed the two studies, respectively. The survey required the completion of the International Physical Activity Questionnaire, and of two questionnaires on stress response, namely, the Impact of Event Scale-Revised and the Perceived Stress Scale. The correlation between the questionnaires' scores was examined. Results: Study 1 demonstrated that higher levels of PA during the lockdown, related to working and walking activities, were associated with fewer stress-related symptoms and lower stress perception. In parallel, greater reduction of PA, during lockdown compared to the pre-pandemic period, was associated with more stress-related symptoms. People who spent more time at rest (sitting) before and during the pandemic lockdown were those who showed higher psychological impact. Study 2 confirmed the benefits of maintaining working activities during lockdown, but also showed that during the second pandemic wave people were more resilient to PA restrictions and home isolation, even if conducting a sedentary lifestyle. Conclusions: Maintaining good levels of PA during lockdown was a protective factor against developing stress-related symptoms in older people. On the other hand, more resilient response to stress emerged in this population during the second wave
Pre-test analysis of protected loss of primary pump transients in CIRCE-HERO facility
In the frame of LEADER project (Lead-cooled European Advanced Demonstration Reactor), a new configuration of the steam generator for ALFRED (Advanced Lead Fast Reactor European Demonstrator) was proposed. The new concept is a super-heated steam generator, double wall bayonet tube type with leakage monitoring [1]. In order to support the new steam generator concept, in the framework of Horizon 2020 SESAME project (thermal hydraulics Simulations and Experiments for the Safety Assessment of MEtal cooled reactors), the ENEA CIRCE pool facility will be refurbished to host the HERO (Heavy liquid mEtal pRessurized water cOoled tubes) test section to investigate a bundle of seven full scale bayonet tubes in ALFRED-like thermal hydraulics conditions. The aim of this work is to verify thermofluid dynamic performance of HERO during the transition from nominal to natural circulation condition. The simulations have been performed with RELAP5-3D© by using the validated geometrical model of the previous CIRCE-ICE test section [2], in which the preceding heat exchanger has been replaced by the new bayonet bundle model. Several calculations have been carried out to identify thermal hydraulics performance in different steady state conditions. The previous calculations represent the starting points of transient tests aimed at investigating the operation in natural circulation. The transient tests consist of the protected loss of primary pump, obtained by reducing feed-water mass flow to simulate the activation of DHR (Decay
Heat Removal) system, and of the loss of DHR function in hot conditions, where feed-water mass flow rate is absent. According to simulations, in nominal conditions, HERO bayonet bundle offers excellent thermal hydraulic behavior and, moreover, it allows the operation in natural circulation
Post-test simulation of a PLOFA transient test in the CIRCE-HERO facility
CIRCE is a lead–bismuth eutectic alloy (LBE) pool facility aimed to simulate the primary system of a heavy liquid metal (HLM) cooled pool-type fast reactor. The experimental facility was implemented with a new test section, called HERO (Heavy liquid mEtal pRessurized water cOoled tubes), which consists of a steam generator composed of seven double-wall bayonet tubes (DWBT) with an active length of six meters. The experimental campaign aims to investigate HERO behavior, which is representative of the tubes that will compose ALFRED SG. In the framework of the Horizon 2020 SESAME project, a transient test was selected for the realization of a validation benchmark. The test consists of a protected loss of flow accident (PLOFA) simulating the shutdown of primary pumps, the reactor scram and the activation of the DHR system. A RELAP5-3D© nodalization scheme was developed in the pre-test phase at DIAEE of “Sapienza” University of Rome, providing useful information to the experimentalists. The model consisted to a mono-dimensional scheme of the primary flow path and the SG secondary side, and a multi-dimensional component simulating the large LBE pool. The analysis of experimental data, provided by ENEA, has suggested to improve the thermal–hydraulic model with a more detailed nodalization scheme of the secondary loop, looking to reproduce the asymmetries observed on the DWBTs operation. The paper summarizes the post-test activity performed in the frame of the H2020 SESAME project as a contribution of the benchmark activity, highlighting a global agreement between simulations and experiment for all the primary circuit physical quantities monitored. Then, the attention is focused on the secondary system operation, where uncertainties related to the boundary conditions affect the computational results
Vector and scalar form factors for K- and D-meson semileptonic decays from twisted mass fermions with Nf = 2
We present lattice results for the form factors relevant in the K -> pion and
D -> pion semileptonic decays, obtained from simulations with two flavors of
dynamical twisted-mass fermions and pion masses as light as 260 MeV. For K ->
pion decays we discuss the estimates of the main sources of systematic
uncertainties, including the quenching of the strange quark, leading to our
final result f+(0) = 0.9560 (57) (62). Combined with the latest experimental
data, our value of f+(0) implies for the CKM matrix element |Vus| the value
0.2267 (5) (20) consistent with the first-row CKM unitarity. For D -> pion
decays the application of Heavy Meson Chiral Perturbation Theory allows to
extrapolate our results for both the scalar and the vector form factors at the
physical point with quite good accuracy, obtaining a nice agreement with the
experimental data. In particular at zero-momentum transfer we obtain f+(0) =
0.64 (5).Comment: 8 pages, 4 figures, 1 table, proceedings of the XXVII Int'l Symposium
on Lattice Field Theory (LAT2009), July 26-31 2009, Peking University,
Beijing (China
semileptonic form factors with Twisted Mass fermions
We present a lattice QCD determination of the vector and scalar form factors
of the semileptonic decay which are relevant for the
extraction of the CKM matrix element from experimental data. Our
results are based on the gauge configurations produced by the European Twisted
Mass Collaboration with dynamical fermions, which include in the
sea, besides two light mass degenerate quarks, also the strange and the charm
quarks. We use data simulated at three different values of the lattice spacing
and with pion masses as small as MeV. Our final result for the vector
form factor at zero momentum transfer is , where the
uncertainty is both statistical and systematic combined in quadrature. Using
the latest experimental value of from decays, we
obtain , which allows to test the unitarity constraint
of the Standard Model below the permille level once the determination of
from superallowed nuclear decays is adopted. A slight
tension with unitarity at the level of standard deviations is
observed. Moreover we present our results for the semileptonic scalar
and vector form factors in the whole range of values of
the squared four-momentum transfer measured in decays,
obtaining a very good agreement with the momentum dependence of the
experimental data. We provide a set of synthetic data points representing our
results for the vector and scalar form factors at the physical point for
several selected values of .Comment: 37 pages, 5 tables, 9 figures; version to appear in PR
- …