775 research outputs found

    Coherent switching of semiconductor resonator solitons

    Full text link
    We demonstrate switching on and off of spatial solitons in a semiconductor microresonator by injection of light coherent with the background illumination. Evidence results that the formation of the solitons and their switching does not involve thermal processes.Comment: 3 pages, 5 figure

    Spatial Resonator Solitons

    Full text link
    Spatial solitons can exist in various kinds of nonlinear optical resonators with and without amplification. In the past years different types of these localized structures such as vortices, bright, dark solitons and phase solitons have been experimentally shown to exist. Many links appear to exist to fields different from optics, such as fluids, phase transitions or particle physics. These spatial resonator solitons are bistable and due to their mobility suggest schemes of information processing not possible with the fixed bistable elements forming the basic ingredient of traditional electronic processing. The recent demonstration of existence and manipulation of spatial solitons in emiconductor microresonators represents a step in the direction of such optical parallel processing applications. We review pattern formation and solitons in a general context, show some proof of principle soliton experiments on slow systems, and describe in more detail the experiments on semiconductor resonator solitons which are aimed at applications.Comment: 15 pages, 32 figure

    Dark polariton-solitons in semiconductor microcavities

    Full text link
    We report the existence, symmetry breaking and other instabilities of dark polariton-solitons in semiconductor microcavities operating in the strong coupling regime. These half-light half-matter solitons are potential candidates for applications in all-optical signal processing. Their excitation time and required pump powers are a few orders of magnitude less than those of their weakly coupled light-only counterparts.Comment: submitted to PR

    Realization of a semiconductor-based cavity soliton laser

    Get PDF
    The realization of a cavity soliton laser using a vertical-cavity surface-emitting semiconductor gain structure coupled to an external cavity with a frequency-selective element is reported. All-optical control of bistable solitonic emission states representing small microlasers is demonstrated by injection of an external beam. The control scheme is phase-insensitive and hence expected to be robust for all-optical processing applications. The motility of these structures is also demonstrated

    Hadron Resonance Gas Model with Induced Surface Tension

    Full text link
    Here we present a physically transparent generalization of the multicomponent Van der Waals equation of state in the grand canonical ensemble. For the one-component case the third and fourth virial coefficients are calculated analytically. It is shown that an adjustment of a single model parameter allows us to reproduce the third and fourth virial coefficients of the gas of hard spheres with small deviations from their exact values. A thorough comparison of the compressibility factor and speed of sound of the developed model with the one and two component Carnahan-Starling equation of state is made. It is shown that the model with the induced surface tension is able to reproduce the results of the Carnahan-Starling equation of state up to the packing fractions 0.2-0.22 at which the usual Van der Waals equation of state is inapplicable. At higher packing fractions the developed equation of state is softer than the gas of hard spheres and, hence, it breaks causality in the domain where the hadronic description is expected to be inapplicable. Using this equation of state we develop an entirely new hadron resonance gas model and apply it to a description of the hadron yield ratios measured at AGS, SPS, RHIC and ALICE energies of nuclear collisions. The achieved quality of the fit per degree of freedom is about 1.08. We confirm that the strangeness enhancement factor has a peak at low AGS energies, while at and above the highest SPS energy of collisions the chemical equilibrium of strangeness is observed. We argue that the chemical equilibrium of strangeness, i.e. γs≃1\gamma_s \simeq 1, observed above the center of mass collision energy 4.3 GeV may be related to the hadronization of quark gluon bags which have the Hagedorn mass spectrum, and, hence, it may be a new signal for the onset of deconfinement

    Hard-core Radius of Nucleons within the Induced Surface Tension Approach

    Full text link
    In this work we discuss a novel approach to model the hadronic and nuclear matter equations of state using the induced surface tension concept. Since the obtained equations of state, classical and quantum, are among the most successful ones in describing the properties of low density phases of strongly interacting matter, they set strong restrictions on the possible value of the hard-core radius of nucleons. Therefore, we perform a detailed analysis of its value which follows from hadronic and nuclear matter properties and find the most trustworthy range of its values: the hard-core radius of nucleons is 0.30--0.36 fm. A comparison with the phenomenology of neutron stars implies that the hard-core radius of nucleons has to be temperature and density dependent.Comment: 12 pages, 4 figures, references added, typos correcte

    Patterns and localized structures in bistable semiconductor resonators

    Full text link
    We report experiments on spatial switching dynamics and steady state structures of passive nonlinear semiconductor resonators of large Fresnel number. Extended patterns and switching front dynamics are observed and investigated. Evidence of localization of structures is given.Comment: 5 pages with 9 figure
    • …
    corecore