628 research outputs found

    Lower mass limit of an evolving interstellar cloud and chemistry in an evolving oscillatory cloud

    Get PDF
    Simultaneous solution of the equation of motion, equation of state and energy equation including heating and cooling processes for interstellar medium gives for a collapsing cloud a lower mass limit which is significantly smaller than the Jeans mass for the same initial density. The clouds with higher mass than this limiting mass collapse whereas clouds with smaller than critical mass pass through a maximum central density giving apparently similar clouds (i.e., same Av, size and central density) at two different phases of its evolution (i.e., with different life time). Preliminary results of chemistry in such an evolving oscillatory cloud show significant difference in abundances of some of the molecules in two physically similar clouds with different life times. The problems of depletion and short life time of evolving clouds appear to be less severe in such an oscillatory cloud

    On non-LTE H<SUB>2</SUB><SUP>+</SUP> as missing solar opacity

    Get PDF
    A careful examination has revealed that use of incomplete reaction processes and incorrect rates have led Krishna Swamy and Stecher to overestimate the H2+ opacity by a factor of 104 at &#955; = 2000 &#197;. H2+ is not a significant source of opacity in the solar atmosphere

    Self-Similarity and Scaling Exponent for DNA Walk Model in Two and Four Dimensions

    Get PDF

    On the Correlation Between CO Absorption and Far-Ultraviolet Non-Linear Extinction Toward Galactic OB Stars

    Get PDF
    A sample of 59 sight lines to reddened Galactic OB stars was examined for correlations of the strength of the CO Fourth Positive (A - X) absorption band system with the ultraviolet interstellar extinction curve parameters. We used archival high-dispersion NEWSIPS IUE spectra to measure the CO absorption for comparison to parametric fits of the extinction curves from the literature. A strong correlation with the non-linear far-UV curvature term was found with greater absorption, normalized to E(B-V), being associated with more curvature. A weaker trend with the linear extinction term was also found. Mechanisms for enhancing CO in dust environments exhibiting high non-linear curvature are discussed.Comment: 10 pages, including 6 figures. LaTeX2e (emulateapj5.sty). To appear in ApJ, Sep 20, 200

    Diffusion with rearranging traps

    Full text link
    A model for diffusion on a cubic lattice with a random distribution of traps is developed. The traps are redistributed at certain time intervals. Such models are useful for describing systems showing dynamic disorder, such as ion-conducting polymers. In the present model the traps are infinite, unlike an earlier version with finite traps, this model has a percolation threshold. For the infinite trap version a simple analytical calculation is possible and the results agree qualitatively with simulation.Comment: Latex, five figure

    Percolation in Models of Thin Film Depositions

    Full text link
    We have studied the percolation behaviour of deposits for different (2+1)-dimensional models of surface layer formation. The mixed model of deposition was used, where particles were deposited selectively according to the random (RD) and ballistic (BD) deposition rules. In the mixed one-component models with deposition of only conducting particles, the mean height of the percolation layer (measured in monolayers) grows continuously from 0.89832 for the pure RD model to 2.605 for the pure RD model, but the percolation transition belong to the same universality class, as in the 2- dimensional random percolation problem. In two- component models with deposition of conducting and isolating particles, the percolation layer height approaches infinity as concentration of the isolating particles becomes higher than some critical value. The crossover from 2d to 3d percolation was observed with increase of the percolation layer height.Comment: 4 pages, 5 figure

    How the geometry makes the criticality in two - component spreading phenomena?

    Full text link
    We study numerically a two-component A-B spreading model (SMK model) for concave and convex radial growth of 2d-geometries. The seed is chosen to be an occupied circle line, and growth spreads inside the circle (concave geometry) or outside the circle (convex geometry). On the basis of generalised diffusion-annihilation equation for domain evolution, we derive the mean field relations describing quite well the results of numerical investigations. We conclude that the intrinsic universality of the SMK does not depend on the geometry and the dependence of criticality versus the curvature observed in numerical experiments is only an apparent effect. We discuss the dependence of the apparent critical exponent χa\chi_{a} upon the spreading geometry and initial conditions.Comment: Uses iopart.cls, 11 pages with 8 postscript figures embedde

    Molecular Analysis of Disease-Responsive Genes Revealing the Resistance Potential Against Fusarium Wilt (Fusarium udum Butler) Dependent on Genotype Variability in the Leguminous Crop Pigeonpea

    Get PDF
    Fusarium wilt (FW), caused by Fusarium udum Butler (FU), is among the challenging factors in the production of pigeonpea. Therefore, exploring a superior pigeonpea genotype from landraces or local cultivars through the selection of innate resistance to FW using different biological and molecular approaches, and validating its resistance response, could be an alternative to sustainable crop improvement. Five distinct pigeonpea genotypes, with resistant (ICP2894) and susceptible (ICP2376) controls, were selected on the basis of the incidence percentage of FW, from three different states of India. Among them, the cultivar Richa, which displayed low incidence of FW (10.0%) during the genotype evaluation, was further examined for its innate resistance to FW. Molecular characterization of antioxidant (AO) enzyme [APX and SOD] and pathogenesis-related (PR) protein [CHS and b-1, 3-glucanase] families were performed. The obtained results of reverse transcription-polymerase chain reaction-based expression study and in silico analysis showed a higher level of induction of PR and AO genes, and the strong interaction of their putative proteins with fungal cellobiohydrolase-c protein established their antifungal activity, conferring early plant defense responses to FU in Richa. Our study demonstrated a strong and combinatorial approach involving biological assay, molecular experiments, and in silico analysis to identify a superior pigeonpea genotype that was resistant to FW across a major biogeographic region
    corecore