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A b s t r a c t  . R ecen t in v e s tig a tio n s  in to  c h a ra c te r is tic s  o f long  DN A  se q u en ces  have 
focused attention on the possible existence o f  fractal dim ensions and long range correlations 
in such sequences Coupled w ith the search for patterns in base distribution, identification o f 
coding and non-coding regions and the larger issue o f indexation and classification o f DNA 
sequences, these rem ain am ong the m ost challenging problem s for m olecular physics.

In th is con tex t, X iao e t u l 11] and o thers, e .g  , Je ffrey  [2], have show n that se lf-s im ila r  
patterns do exist in DNA sequences w hen m apped m specific m anners, and that the fractal 
d im en sio n s  o f  in tro n s and exo n s d if fe r  re flec tin g  the d iffe re n c e s  in th e ir  s tru c tu re  and 
function In this paper, we consider the problem  from  slightly different perspective, analysing 
DNA sequences as a walk m a space o f  (a) two and (b) four dim ensions as follow s .

(a )  The DNA sequence is m apped onto  a tw o-d im ensional m etric space accord ing  to  the 
p rescrip tion  o f  N andy [3], and wc m easure the leng th  o f  the resu lting  D NA w alk in 
d ifferent length scales. It is found that self-sim ilarity  exists and a scaling exponent can 
be defined w hich quantifies the “ random ness”  o f  the walk A m arked persistence o f  the 
walk is observed for the intron segm ents. System atics betw een different species is also 
n o ted

(b) In the second approach, we represent the DNA sequence as a d irected  w alk in a four- 
d im en sio n a l m etric  w here  A, C, G , T rep re sen t the  fo u r co o rd in a te s  and the  four- 
dim cnsicm al leng th  L ( l )  o f  the w alk  is ca lcu la ted  for d iffe ren t length  sca les I The 
difference betw een L( 1) and the end-to-end distance Lo gives an idea about the correlation 
length  o f  the sequence.
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1- Introduction

The DNA sequence contains all relevant biological information of an organism in the form of a 
one-dimensional array of four bases: adenine (A), guanine (G), cytosine (C) and thymine (T). 
Identifying the presence of any pattern or any type of order in DNA sequences has been a

©19991ACS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IACS Institutional Repository

https://core.ac.uk/display/158962855?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


338 S Tarafdar ct al

long-standing but formidable problem, the elucidation of which is expected to facilitate 
comparative studies of DNA sequences and evolutionary signatures and consequences. Earlier 
work in this field have shown that long DNA sequences exhibit intriguing features of self­
similarity or scale invariance [2,4, 5). Recently, Xiao?/ al 11 ] have done fractal studies of DNA 
sequences and reported significant differences in the fractal exponents of coding and non­
coding regions and have claimed that this can be used as a signature to determine the nature 
of a raw sequence.

In this paper, we locus on techniques of fractal analysis and look for patterns or 
correlations by two approaches :

1. Calculating the scaling exponents in two-dimensional DNA walk model of DNA 
sequences [3] ;

2. Calculating the scaling exponent and identifying a characteristic length in a 4- 
dimensional directed DNA walk model. The question of long range correlations 
in DNA sequences that is a natural corollary of such an analysis is also addressed 
in this study.

In this analyses, we look for systematics in the scaling exponents for different genes, 
same genes for different species and for coding and non-coding regions.

2. Method

Two dimensional DNA walk :

A sequence can be mapped in 2-D by a “walk" where a step is taken in the negative x-dircction 
for an A, a step in the positive y-direction for a C, a step in the positive x-dircction for a G and 
a step in the negative y-direction for a T in the sequence. This generates a plot of the sequence 
reflecting the distribution of bases along the sequence as shown in the example in Figure 1 
The length L of such a walk measured by joining points with different base intervals T is lound 
to obey a relation

L ( I ) ~ \~D for certain range of I. (I)

F ig u re  I . Exam ple o f  a tw o-dim ensional graphical representation  o f  the rat skeletal myosin 
heavy chain gene (RNMHCG) mapped as stated in the text [7).



Self-similarity and scaling exponent for DNA walk model etc 339

The value of D can be indicative of the presence or absence of long-range correlation. 
For D = 0.5 the walk is random with no correlation. This can be seen as follows : Let us take a 
sequence with Nfot bases. We divide NWJ into intervals of length I. The distance between two 
points separated by I is given by a power law

d{ I ) -1“ for sufficiently large I. (2)

For a random walk we have the walk-known result, a =  0.5. The number of intervals is 
N '!, so the total length of the ‘walk’ is

tot

A( I ) -  I" NtJ  I

which is eq. (1) with D = 1 -  a. Thus, for the random walk where each step is independent of the 
previous step, D = ( X =  0.5.

Departure of a  towards a smaller or larger value indicates correlations. If the walk is 
persistent, i.e., the probability of moving in the same direction as the previous step is higher 
than foi motion in other direction, then a  > 0.5, so /) < 0.5. In the opposite case, i.e., anti- 
persistence, the probability of continuing in the same direction is less compared to the probability 
ol moving in the other directions. Here a<  0.5 and D > 0.5. In both cases, the walker retains a 
memory of the previous step. This is correlation without bias (i.e. preference for moving in one 
particular direction).

It is to be noted that D is different from the fractal dimension of the path representing 
the sequence. This would be obtained by measuring the track of the walker on different length 
scales to get a power law relation. Xiao el al 11 ] have done such a study.

Four-dimensional DNA walk model:

The previous approach shows interesting results reported elsewhere [6), but the mapping is 
dependent on the choice of co-ordinates and there are overlapping points. We can get a 
unique walk by mapping the sequence in four dimensions as a directed walk withXjWhX-XG), 
A'<(0 and X4(T) always increasing.

Our aim is to differentiate between walks-each starting at the origin X = Oand ending 
at the same point X( f )  i -  1,2, 3, 4 on the basis of the pattern of the walk, i.e., the correlation, 
if any, in the definite sequence of the bases. Here we apply the prescription of Method 1 to

S(I) = L ( I ) - L 0 ,

'vherc La = [ l X (2 ( /) ]* , (3)

thus eliminating the ‘drift’.

We find that S( I ) vs I gives a very good power law fit with a characteristic exponent D’ 
(Figure 2)
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This work is still m progress
jy  for several sequences are g iven

in later.

VI
Interval (1)

i to tk  «*“"* ““
<KN^CC» -  « *  — “

Characteristic Length . • thc sequences. A sudden drop in
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more homogeneous. As an illustration, we show two walks, W 1 and W2 on a two-dimensional 
map with only two types of bases A and C (Figure 3) :

W l-ACACACAC......................

W2 -  AAAACCCCAAAACCCC.........

A -------- ►

F ig u re  3. Two hypothetical w alks to dem onstrate  the differences in L ( I ) values

For W ),L ( \) falls toL() as I increases from 1 to 2. But for W2, L( I ) has a constant value 
lot I = I to I = 4 and drops to L() only when I -  8. So two walks having the four bases in equal 
numbers may be differentiated by defining a characteristic length lc where S ( lf ) = L ( l( ) -  L0 
1 ill Is to some definite fraction of its initial value 5 ( 1 ) = L ( 1 ) -  L0. Assigning this fraction 
arbitrarily as 0.1, preliminary results indicate that 1( ~ 100 from the full sequence, but for the 
coding region along \( is remarkably lower, at around 50. For a meaningful comparison of course 
L (i)~ NwJ has to be equal in both cases.

Another interesting point is that£( I ) provides a measure of the bias, i.e. whether there 
is a preference for any particular base in the sequence or all four arc equally represented. If 
A.C,G,T occur in equal numbers L0 = NUtfl2, so S( 1) = A^,/2. A smaller value indicates an 
unequal distribution, the extreme case being all bases are of one kind, in which case 5(1) = 0.

3. Results and discussion

Applying the scaling technique to the 2-dimensional graphical representations of different 
gene sequences we find the scaling exponents given in Table 1. The results have been averaged 
over different species for each type of gene m Table 1(a) and for each of the different kingdoms 
m Table 1 (b). We note that the scaling exponents for the non-coding regions are always smaller 
than those for the coding regions, and both are smaller than the characteristic value for random 
walks, 0.5. By the definition given above, this would imply greater persistence in the case of 
non-coding regions, which arises from the fact that introns generally have larger repeats and 
duplications. Wc note in passing the obvious fact that sequences where the non-coding 
regions are significantly larger than the coding regions the values of the exponents for the total 
sequences including introns and flanking regions are greater than for the non-coding regions, 
but smaller than for the coding regions. The same differences between coding and non-coding 
regions arc seen in the kingdomwisc table also.
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Tabic 1(a). Scaling exponents for different gene sequences

Gene All

cx globm 0 137 4 0 021

|5-globin 0 259 4 0 038

tubulin 0 193 4 0  086

histone H4 0 227 + 0 082

Heat Shock Protein 0 264

M yosin H eavy Cham 0 048 4 0 014

(In v e rteb ra te s  only)

cD N A N on-co d in g

0 310 4  0 060 0 144 4  0 .037

0 425 4 0.0.39 0 248 4  0 .060

0 282 4  0 052 0  146 4  0 017

0 309 4  0 .078

0 .3 7 6 0 2 2 0

0 052 4  0 015

T ab le  1(b). Scaling exponents for different k ingdom s

K ingdom eD N A N o n -co d in g

P lan ts 0 243 4  0 021

Avian 0 329 4  0 069 0 163 4  0 027

A m phibians 0 412 4  0.002

M am m als 0 354 4  0 060 0 157 4  0 065

In v erteb ra tes 0 .048 4  0 014 0 052 + 0 051

V ertebrates 0 .353 4 0 063 0.161 4  0  054

In the case of the four-dimensional directed walks, the scaling exponent for the normal 
walk shows very little variations between the different genes (Table 2). However, when the 
effect of the directional walk is taken out by subtracting the gross length from the calculated 
length, the exponents show wide variations. However, contrary to the two-dimensional DNA 
walks, in this case the value of the exponent is almost always > 0.5.

T ab ic  2. Scaling exponents for different genes in 4-13 DNA w alk m odel

G ene 13’

a -g lo h in  0 6 4 9

P-globin 0 .4 5 3

tubulin  0 598

Heat Shock P rotein  0 .5 6 8

M yosin H eavy C hain 0 6 5 2

In this case also, when L -  L() is plotted against I, it shows a sharp drop from which, as 
remarked earlier, we define a correlation length \t (Figure 2). This characteristic length is found 
to be -  100 for the case of non-coding regions and -  50 for the coding regions.

4. Conclusion

Thus we find that the distribution of bases in a DNA sequence follows some sort of sca le  

invariance leading to scaling exponents that are quite different From the case of random
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distributions. In fact, our observations from the two-dimensional graphical representation 
calculations show that while the distribution pattern in coding regions is close to random, the 
base distribution in non-coding regions contain a persistent pattern that results in low exponent 
values. The surprising result that the exponent for the coding regions m the four-dimensional 
model is greater than 0.5 can be understood from the differences in the methodology of plotting 
of points in the two models. Further work is in progress to understand these phenomena. The 
concept of characteristic length for coding and non-coding regions in the 4-D model is new 
and further work is being carried out in this area also.
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