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Abstract . Recent investigations into charactenistics of long DNA sequences have
focused attention on the possible existence of fractal dimensions and long range corrclations
in such sequences Coupled with the search for patterns tn base distribution. 1dentification of
coding and non-coding regions and the larger 1ssue of indexation and classification of DNA
sequences, these remain among the most challenging problems for molecular physics.

In this context, X1a0 ef al [1] and others, e.g. Jeffrey [2], have shown that self-similar
patterns do exist in DNA sequences when mapped 1n specific manners, and that the fractal
dimensions of introns and exons differ reflecting the differences in their structure and
function In this paper. we consider the problem from slightly different perspective. analysing
DNA sequences as a walk 1n a space of (a) two and (b) four dimensions as follows .

(a) The DNA sequence is mapped onto a two-dimensional metric space according to the
prescription of Nandy [3], and wc mcasure the length of the resuling DNA walk in
differcnt length scales. It 1s found that self-sumlarity exists and a scaling exponent can
be defined which quantifics the “randomness™ of the walk A marked persistence of the
walk 1s obscrved for the intron segments. Systematics between different species 1s also
noted

(b) In the second approach, we represent the DNA sequence as a directed walk n a four-
dimensional metric where A, C. G, T represent the four coordinates and the four-
dimensional length L(1) of the walk is calculated for different length scales | The
difference between L(1) and the end-to-end distance Lo gives an 1dea about the correlation
length of the sequence.
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Introduction

The DNA sequence contains all relevant biological information of an organism in the form of a
one-dimensional array of four bases : adenine (A), guanine (G), cytosine (C) and thymine (T).
Identifying the presence of any pattern or any type of order in DNA sequences has been a
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long-standing but formidable problem, the elucidation of which is cxpected to facilitate
comparative studics of DNA sequences and cvolutionary signatures and consequences. Earlier
work in this field have shown that long DNA sequences exhibit intriguing fcatures of self-
similarity or scale invariance [2, 4, 5]. Recently, Xiaoer al | 17 have done fractal studies of DNA
sequences and reported significant differences in the fractal exponents of coding and non-
coding regions and have claimed that this can be used as a signature to determince the nature
of a raw sequence.

In this paper, we focus on techniques of fractal analysis and look for patterns or
corrclations by two approaches :

1. Calculating the scaling cxponcents in two-dimensional DNA walk model of DNA
sequences [3] :

2. Calculating the scaling exponent and identifying a characteristic length in a 4-
dimensional directed DNA walk model. The question of long range correlations
in DNA sequences that is a natural corollary of such an analysis is also addresscd
in this study.

In this analyscs. we look for systematics in the scaling exponents for different genes,
same genes for different species and for coding and non-coding regions.

2. Method

Two dimensional DNA walk :

A sequence can be mapped in 2-D by a “*walk™ where a step 1s taken in the negative x-dircction
for an A, a step in the positive y-direction for a C. a step in the positive x-direction for a G and
a step in the negative y-direction for a T in the sequence. This gencrates a plot of the sequence
reflecting the distribution of bascs along the scquence as shown in the cxample in Figure |
The length L of such a walk mcasured by joining points with different base intervals *I" is found
to obcy a relation

L (1)~ for certain range of |. (n

10V

U | U
S & o
@ © o
T T T

v

-300 -200 - 100 100

Figure 1. Example of a two-dimensional graphical represcntation of the rut skeletal myosin
heavy chain gene (RNMHCG) mapped as stated in the text |7).
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The value of D can be indicative of the presence or absence of long-range correlation.
For D = 0.5 the walk is random with no corrclation. This can be seen as follows : Let us take a
sequence with N, bascs. We divide N, into intervals of length I. The distance between two

points scparated by | is given by a power law
d(!)~1* for sufficiently large | . )

For arandom walk we have the walk-known result, @=1().5. The number of intervals is
NM’I. so the total length of the ‘walk’ is

L(1)~1*N, /I

tot

e |
tor”
whichis eq. (1) with D = | — ot Thus, for the random walk where cach step is independent of the

previous step, D =a=0.5.

Departure of o towards a smaller or larger value indicates correlations. If the walk 1s
persistent, i.e., the probability of moving in the same direction as the previous step is higher
than for motion in other direction, then o > 0.5, so 1) < 0.5. In the opposite case, i.e.. anti-
persistence. the probability of continuing in the same direction is less compared to the probability
of moving in the other directions. Here a< 0.5 and > 0).5. In both cases, the walker retains a
memory of the previous step. This is correlation without bias (.. preference for moving in one
particular direction).

It is to be noted that D is different from the fractal dimension of the path representing
the sequence. This would be obtained by measuring the track of the walker on different Iength
scales to get a power law relation. Xiao ef al [ 1] have done such a study.

Four-dimensional DNA walk model :

The previous approach shows interesting results reported elsewhere |6], but the mapping is
dependent on the choice of co-ordinates and there are overlapping points. We can get a
unique walk by mapping the sequence in four dimensions as a directed walk with X, (A). X (G),
X(C)and X,(T) always increasing.

Our aim 1s to differentiate between walks — each starting at the origin X, = 0 and ending
at the same point X (f)i=1.2,3,40n the basis of the pattern of the walk. i.e.. the correlation,
il any, in the definite sequence of the bases. Here we apply the prescription of Method 1 to

S()y= L)~ L, ,

where L, = [Z X7 j')]%, 3)

thus climinating the *drift’.

We find that S( | ) vs | gives a very good power law fit with a characteristic exponent D’
(Figure 2)

L-Ly~t7
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This work is stilhn PrOZress. D' for several sequences are given in later.
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Figure 2(a)- A typcal plot of [~ VsV
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Figure 2(b). A typical plot of L-L, Vs nterval | for the coding sequence of the rat skeletal
myosin heavy chain gene (RNMHCG) with 6034 nucleotides

Characteristic Length :

The 4-dimensional walk, Figure 3, reveals further features in the sequences. A sudden drop in

the curve indicates the presence of 2 characteristic length above which the pattern appears
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more homogeneous. As an illustration, we show two walks, W1 and W2 on a two-dimensional
map with only two types of bases A and C (Figure 3) :

WI1~ACACACAC...........cou.... .
W2~ AAAACCCCAAAACCCC........
12 4

Figure 3. Two hypothetical walks 1o demonstrate the differences in L ( 1) values

For W1, L (1) falls to L, as I increascs from 1 to 2. But for W2, L(1) has a constant value
for1=1to1=4and drops to L, only when |~ 8. So two walks having the four bascs in equal
numbers may be differentiated by defining a characteristic length | where S (1 )=L (1l )~L,
falls to some definite fraction of its miual value S ( 1) =L (1)~ L,. Assigning this fraction
arbitrarily as 0.1, preliminary results indicate that |~ 100 from the full sequence, but for the
coding region along | is remarkably lower. at around 50. For a meaningful comparison of course
L ()= N,  has to be cqual in both cases.

Another interesting point is that (1) provides a mcasure of the bias, i.e. whether there
1 a preference for any particular base in the sequence or all four arc equally represented. If
A.C.G.T occur in equal numbers L, = N, /2, so S(1) = N, /2. A smaller value indicates an
uncqual distribution, the extremc case being all bascs are of one kind, in which case S(1) =0.

3. Results and discussion

Applying the scaling technique to the 2-dimensional graphical representations of different
gene sequences we find the scaling exponents given in Table 1. The results have been averaged
over different specics for cach type of gene 1n Table 1(a) and for cach of the difterent kingdoms
in Table 1(b). We note that the scaling exponents for the non-coding regions arc always smaller
than those for the coding regions, and both are smaller than the characteristic value for random
walks, 0.5. By the definition given above, this would imply greater persistence in the case of
non-coding regions, which arises from the fact that introns generally have larger repeats and
duplications. We note in passing the obvious fact that sequences where the non-coding
regions are significantly larger than the coding regions the valucs of the exponents for the total
sequences including introns and flanking regions are greater than for the non-coding regions,
but smaller than for the coding regions. The same differcnces between coding and non-coding
regions are secn in the kingdomwise table also.
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Table 1(a). Scaling exponents for different gene sequences

Gene All cDNA Non-coding
a-globmn 0137 + 0021 0310 + 0060 0 144 + 0.037
B-globin 0259 + 0038 0425 + 0.039 0248 + 0.060
tubuhin 0193 + 0086 0282 + 0052 0146 + 0017
histone H4 0227 + 0082 0309 + 0.078

Heat Shock Protein 0204 0.376 0220
Myosin Heavy Chamn 0048 + 0014 0052 + 0018

(Invertebrates only)

Table I(b). Scaling exponents for different kingdoms

Kingdom cDNA Non-coding
Plants 0243 + 0021
Avian 0329 + 0069 0163 + 0027

Amphibians

0412 + 0.002

Mammals 0354 + 0060 0157 + 0065
Invertebrates 0.048 + 0014 0052 + 0051
Vertebrates 0353 + 0063 0.161 + 0054

In the case of the four-dimensional directed walks. the scaling exponent for the normal
walk shows very little variations between the different genes (Table 2). However, when the
effect of the dircctional walk is taken out by subtracting the gross length from the calculated
length, the exponents show wide variations. However. contrary to the two-dimensional DNA
walks, in this case the value of the exponent is almost always > 0).5.

Table 2. Scaling exponents for different genes in 4-1 DNA walk model

Gene D’

a-globin 0 649
B-globin 0.453
tubulin 0 598
Hcat Shock Protein 0.568
Myosin Heavy Chain 0 652

In this case also, when L - L is plotted against |, it shows a sharp drop from which, as
remarked earlier, we define a correlation length | (Figure 2). This characteristic length is found
to be ~ 100 for the casc of non-coding regions and ~ 50 for the coding regions.

4. Conclusion

Thus we find that the distribution of bases in a DNA sequence follows some sort of scalc
invariance leading to scaling cxponents that are quitc different from the case of random
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distributions. In fact, our observations from the two-dimensional graphical representation
calculations show that while the distribution pattern in coding regions s close to random, the
base distribution in non-coding regions contain a persistent pattern that results in low exponent
values. The surprising result that the exponent for the coding regions in the four-dimensional
modcl is greater than 0.5 can be understood from the differences in the methodology of plotting
of points in the two models. Further work is in progress to understand these phenomena. The
concept of characteristic length for coding and non-coding regions in the 4-D model is new
and further work is being carried out in this area also.
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