109 research outputs found

    Representation of the verb's argument-structure in the human brain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A verb's argument structure defines the number and relationships of participants needed for a complete event. One-argument (intransitive) verbs require only a subject to make a complete sentence, while two- and three-argument verbs (transitives and ditransitives) normally take direct and indirect objects. Cortical responses to verbs embedded into sentences (correct or with syntactic violations) indicate the processing of the verb's argument structure in the human brain. The two experiments of the present study examined whether and how this processing is reflected in distinct spatio-temporal cortical response patterns to isolated verbs and/or verbs presented in minimal context.</p> <p>Results</p> <p>The magnetoencephalogram was recorded while 22 native German-speaking adults saw 130 German verbs, presented one at a time for 150 ms each in experiment 1. Verb-evoked electromagnetic responses at 250 – 300 ms after stimulus onset, analyzed in source space, were higher in the left middle temporal gyrus for verbs that take only one argument, relative to two- and three-argument verbs. In experiment 2, the same verbs (presented in different order) were preceded by a proper name specifying the subject of the verb. This produced additional activation between 350 and 450 ms in or near the left inferior frontal gyrus, activity being larger and peaking earlier for one-argument verbs that required no further arguments to form a complete sentence.</p> <p>Conclusion</p> <p>Localization of sources of activity suggests that the activation in temporal and frontal regions varies with the degree by which representations of an event as a part of the verbs' semantics are completed during parsing.</p

    Exploiting the Role of Endogenous Lymphoid-Resident Dendritic Cells in the Priming of NKT Cells and CD8+ T Cells to Dendritic Cell-Based Vaccines

    Get PDF
    Transfer of antigen between antigen-presenting cells (APCs) is potentially a physiologically relevant mechanism to spread antigen to cells with specialized stimulatory functions. Here we show that specific CD8+ T cell responses induced in response to intravenous administration of antigen-loaded bone marrow-derived dendritic cells (BM-DCs), were ablated in mice selectively depleted of endogenous lymphoid-resident langerin+ CD8α+ dendritic cells (DCs), suggesting that the antigen is transferred from the injected cells to resident APCs. In contrast, antigen-specific CD4+ T cells were primed predominantly by the injected BM-DCs, with only very weak contribution of resident APCs. Crucially, resident langerin+ CD8α+ DCs only contributed to the priming of CD8+ T cells in the presence of maturation stimuli such as intravenous injection of TLR ligands, or by loading the BM-DCs with the glycolipid α-galactosylceramide (α-GalCer) to recruit the adjuvant activity of activated invariant natural killer-like T (iNKT) cells. In fact, injection of α-GalCer-loaded CD1d−/− BM-DCs resulted in potent iNKT cell activation, suggesting that this glycolipid antigen can also be transferred to resident CD1d+ APCs. While iNKT cell activation per se was independent of langerin+ CD8α+ DCs, some iNKT cell-mediated activities were reduced, notably release of IL-12p70 and transactivation of NK cells. We conclude that both protein and glycolipid antigens can be exchanged between distinct DC species. These data suggest that the efficacy of DC-based vaccination strategies may be improved by the incorporation of a systemic maturation signal aimed to engage resident APCs in CD8+ T cell priming, and α-GalCer may be particularly well suited to this purpose

    Constitutive TL1A (TNFSF15) Expression on Lymphoid or Myeloid Cells Leads to Mild Intestinal Inflammation and Fibrosis

    Get PDF
    TL1A is a member of the TNF superfamily and its expression is increased in the mucosa of inflammatory bowel disease patients. Moreover, a subset of Crohn's disease (CD) patients with the risk TL1A haplotype is associated with elevated TL1A expression and a more severe disease course. To investigate the in vivo role of elevated TL1A expression, we generated two transgenic (Tg) murine models with constitutive Tl1a expression in either lymphoid or myeloid cells. Compared to wildtype (WT) mice, constitutive expression of Tl1a in either lymphoid or myeloid cells showed mild patchy inflammation in the small intestine, which was more prominent in the ileum. In addition, mice with constitutive Tl1a expression exhibited enhanced intestinal and colonic fibrosis compared to WT littermates. The percentage of T cells expressing the gut homing chemokine receptors CCR9 and CCR10 was higher in the Tl1a Tg mice compared to WT littermates. Sustained expression of Tl1A in T cells also lead to increased Foxp3+ Treg cells. T cells or antigen presenting cells (APC) with constitutive expression of Tl1a were found to have a more activated phenotype and mucosal mononuclear cells exhibit enhanced Th1 cytokine activity. These results indicated an important role of TL1A in mucosal T cells and APC function and showed that up-regulation of TL1A expression can promote mucosal inflammation and gut fibrosis

    Investigating the use of world knowledge during on-line comprehension in adults with autism spectrum disorder

    Get PDF
    The on-line use of world knowledge during reading was examined in adults with autism spectrum disorder (ASD). Both ASD and typically developed (TD) adults read sentences that included plausible, implausible and anomalous thematic relations, as their eye movements were monitored. No group differences in the speed of detection of the anomalous violations were found, but the ASD group showed a delay in detection of implausible thematic relations. These findings suggest that there are subtle differences in the speed of world knowledge processing during reading in ASD
    corecore