238 research outputs found

    Polygonal Building Segmentation by Frame Field Learning

    Get PDF
    While state of the art image segmentation models typically output segmentations in raster format, applications in geographic information systems often require vector polygons. To help bridge the gap between deep network output and the format used in downstream tasks, we add a frame field output to a deep segmentation model for extracting buildings from remote sensing images. We train a deep neural network that aligns a predicted frame field to ground truth contours. This additional objective improves segmentation quality by leveraging multi-task learning and provides structural information that later facilitates polygonization; we also introduce a polygonization algorithm that utilizes the frame field along with the raster segmentation. Our code is available at https://github.com/Lydorn/Polygonization-by-Frame-Field-Learning.Comment: CVPR 2021 - IEEE Conference on Computer Vision and Pattern Recognition, Jun 2021, Pittsburg / Virtual, United State

    DAugNet: Unsupervised, Multi-source, Multi-target, and Life-long Domain Adaptation for Semantic Segmentation of Satellite Images

    Full text link
    The domain adaptation of satellite images has recently gained an increasing attention to overcome the limited generalization abilities of machine learning models when segmenting large-scale satellite images. Most of the existing approaches seek for adapting the model from one domain to another. However, such single-source and single-target setting prevents the methods from being scalable solutions, since nowadays multiple source and target domains having different data distributions are usually available. Besides, the continuous proliferation of satellite images necessitates the classifiers to adapt to continuously increasing data. We propose a novel approach, coined DAugNet, for unsupervised, multi-source, multi-target, and life-long domain adaptation of satellite images. It consists of a classifier and a data augmentor. The data augmentor, which is a shallow network, is able to perform style transfer between multiple satellite images in an unsupervised manner, even when new data are added over the time. In each training iteration, it provides the classifier with diversified data, which makes the classifier robust to large data distribution difference between the domains. Our extensive experiments prove that DAugNet significantly better generalizes to new geographic locations than the existing approaches

    Improved Hierarchical Optimization-Based Classification of Hyperspectral Images Using Shape Analysis

    Get PDF
    A new spectral-spatial method for classification of hyperspectral images is proposed. The HSegClas method is based on the integration of probabilistic classification and shape analysis within the hierarchical step-wise optimization algorithm. First, probabilistic support vector machines classification is applied. Then, at each iteration two neighboring regions with the smallest Dissimilarity Criterion (DC) are merged, and classification probabilities are recomputed. The important contribution of this work consists in estimating a DC between regions as a function of statistical, classification and geometrical (area and rectangularity) features. Experimental results are presented on a 102-band ROSIS image of the Center of Pavia, Italy. The developed approach yields more accurate classification results when compared to previously proposed methods

    Best Merge Region Growing with Integrated Probabilistic Classification for Hyperspectral Imagery

    Get PDF
    A new method for spectral-spatial classification of hyperspectral images is proposed. The method is based on the integration of probabilistic classification within the hierarchical best merge region growing algorithm. For this purpose, preliminary probabilistic support vector machines classification is performed. Then, hierarchical step-wise optimization algorithm is applied, by iteratively merging regions with the smallest Dissimilarity Criterion (DC). The main novelty of this method consists in defining a DC between regions as a function of region statistical and geometrical features along with classification probabilities. Experimental results are presented on a 200-band AVIRIS image of the Northwestern Indiana s vegetation area and compared with those obtained by recently proposed spectral-spatial classification techniques. The proposed method improves classification accuracies when compared to other classification approaches

    Spectral-Spatial Classification of Hyperspectral Images Using Hierarchical Optimization

    Get PDF
    A new spectral-spatial method for hyperspectral data classification is proposed. For a given hyperspectral image, probabilistic pixelwise classification is first applied. Then, hierarchical step-wise optimization algorithm is performed, by iteratively merging neighboring regions with the smallest Dissimilarity Criterion (DC) and recomputing class labels for new regions. The DC is computed by comparing region mean vectors, class labels and a number of pixels in the two regions under consideration. The algorithm is converged when all the pixels get involved in the region merging procedure. Experimental results are presented on two remote sensing hyperspectral images acquired by the AVIRIS and ROSIS sensors. The proposed approach improves classification accuracies and provides maps with more homogeneous regions, when compared to previously proposed classification techniques

    Overview of Hierarchical Models for Hyperspectral Image Classification

    Get PDF
    International audienceHyperspectral imaging enables accurate classification, but also presents challenges of high-dimensional data analysis. While pixelwise classification methods classify each pixel independently, recent studies have shown the advantage of considering the correlations between spatially adjacent pixels for accurate image analysis. This paper provides an overview of the available hierarchical models for spectral-spatial classification of hyperspectral images. The two most recent models are experimentally compared on a 102-band ROSIS image of the Center of Pavia, Italy. The experimental results demonstrate that classification methods using hierarchical models are attractive for remote sensing image analysis

    Can you "read tongue movements"?

    Get PDF
    International audienceLip reading relies on visible articulators to ease audiovisual speech understanding. However, lips and face alone provide very incomplete phonetic information: the tongue, that is generally not entirely seen, carries an important part of the articulatory information not accessible through lip reading. The question was thus whether the direct and full vision of the tongue allows tongue reading. We have therefore generated a set of audiovisual VCV stimuli by controlling an audiovisual talking head that can display all speech articulators, including tongue, in an augmented speech mode, from articulators movements tracked on a speaker. These stimuli have been played to subjects in a series of audiovisual perception tests in various presentation conditions (audio signal alone, audiovisual signal with profile cutaway display with or without tongue, complete face), at various Signal-to-Noise Ratios. The results show a given implicit effect of tongue reading learning, a preference for the more ecological rendering of the complete face in comparison with the cutaway presentation, a predominance of lip reading over tongue reading, but the capability of tongue reading to take over when the audio signal is strongly degraded or absent. We conclude that these tongue reading capabilities could be used for applications in the domain of speech therapy for speech retarded children, perception and production rehabilitation of hearing impaired children, and pronunciation training for second language learner

    3D detection of roof sections from a single satellite image and application to LOD2-building reconstruction

    Full text link
    Reconstructing urban areas in 3D out of satellite raster images has been a long-standing and challenging goal of both academical and industrial research. The rare methods today achieving this objective at a Level Of Details 22 rely on procedural approaches based on geometry, and need stereo images and/or LIDAR data as input. We here propose a method for urban 3D reconstruction named KIBS(\textit{Keypoints Inference By Segmentation}), which comprises two novel features: i) a full deep learning approach for the 3D detection of the roof sections, and ii) only one single (non-orthogonal) satellite raster image as model input. This is achieved in two steps: i) by a Mask R-CNN model performing a 2D segmentation of the buildings' roof sections, and after blending these latter segmented pixels within the RGB satellite raster image, ii) by another identical Mask R-CNN model inferring the heights-to-ground of the roof sections' corners via panoptic segmentation, unto full 3D reconstruction of the buildings and city. We demonstrate the potential of the KIBS method by reconstructing different urban areas in a few minutes, with a Jaccard index for the 2D segmentation of individual roof sections of 88.55%88.55\% and 75.21%75.21\% on our two data sets resp., and a height's mean error of such correctly segmented pixels for the 3D reconstruction of 1.601.60 m and 2.062.06 m on our two data sets resp., hence within the LOD2 precision range

    Spatio-Temporal Video Segmentation with Shape Growth or Shrinkage Constraint

    Get PDF
    We propose a new method for joint segmentation of monotonously growing or shrinking shapes in a time sequence of noisy images. The task of segmenting the image time series is expressed as an optimization problem using the spatio-temporal graph of pixels, in which we are able to impose the constraint of shape growth or of shrinkage by introducing monodirectional infinite links connecting pixels at the same spatial locations in successive image frames. The globally optimal solution is computed with a graph cut. The performance of the proposed method is validated on three applications: segmentation of melting sea ice floes and of growing burned areas from time series of 2D satellite images, and segmentation of a growing brain tumor from sequences of 3D medical scans. In the latter application, we impose an additional intersequences inclusion constraint by adding directed infinite links between pixels of dependent image structures

    Shape-Constrained Segmentation Approach for Arctic Multiyear Sea Ice Floe Analysis

    Get PDF
    The melting of sea ice is correlated to increases in sea surface temperature and associated climatic changes. Therefore, it is important to investigate how rapidly sea ice floes melt. For this purpose, a new Tempo Seg method for multi temporal segmentation of multi year ice floes is proposed. The microwave radiometer is used to track the position of an ice floe. Then,a time series of MODIS images are created with the ice floe in the image center. A Tempo Seg method is performed to segment these images into two regions: Floe and Background.First, morphological feature extraction is applied. Then, the central image pixel is marked as Floe, and shape-constrained best merge region growing is performed. The resulting tworegionmap is post-filtered by applying morphological operators.We have successfully tested our method on a set of MODIS images and estimated the area of a sea ice floe as afunction of time
    • …
    corecore