10 research outputs found

    Pediatric Acute Stroke Protocols in the United States and Canada

    No full text
    OBJECTIVE: To describe existing pediatric acute stroke protocols to better understand how pediatric centers might implement such pathways within the context of institution-specific structures. STUDY DESIGN: We administered an Internet-based survey of pediatric stroke specialists. The survey included questions about hospital demographics, child neurology and pediatric stroke demographics, acute stroke response, imaging, and hyperacute treatment. RESULTS: Forty-seven surveys were analyzed. Most respondents practiced at a large, freestanding children\u27s hospital with a moderate-sized neurology department and at least 1 neurologist with expertise in pediatric stroke. Although there was variability in how the hospitals deployed stroke protocols, particularly in regard to staffing, the majority of institutions had an acute stroke pathway, and almost all included activation of a stroke alert page. Most institutions preferred magnetic resonance imaging (MRI) over computed tomography (CT) and used abbreviated MRI protocols for acute stroke imaging. Most institutions also had either CT-based or magnetic resonance-based perfusion imaging available. At least 1 patient was treated with intravenous tissue plasminogen activator (IV-tPA) or mechanical thrombectomy at the majority of institutions during the year before our survey. CONCLUSIONS: An acute stroke protocol is utilized in at least 41 pediatric centers in the US and Canada. Most acute stroke response teams are multidisciplinary, prefer abbreviated MRI over CT for diagnosis, and have experience providing IV-tPA and mechanical thrombectomy. Further studies are needed to standardize practices of pediatric acute stroke diagnosis and hyperacute management

    Treatment Timing, EEG, Neuroimaging, and Outcomes After Acute Necrotizing Encephalopathy in Children

    No full text
    BACKGROUND: Acute necrotizing encephalopathy (ANE) is a rare condition associated with rapid progression to coma and high incidence of morbidity and mortality. METHODS: Clinical, electroencephalographic (EEG), and brain magnetic resonance imaging (MRI) characteristics and immunomodulatory therapy timing were retrospectively analyzed in children with ANE. ANE severity scores (ANE-SS) and MRI scores were also assessed. The associations of patient characteristics with 6-month modified Rankin scale (mRS) and length of hospitalization were determined using either univariate linear regression or one-way analysis of variance. RESULTS: 7 children were retrospectively evaluated. Normal EEG sleep spindles ( = .024) and early treatment ( = .57, = .030) were associated with improved outcomes (ie, decreased mRS). Higher ANE-SS ( = .79, = .011), higher age ( = .62, = .038), and presence of brainstem lesions ( = .015) were associated with longer length of hospitalization. Other patient characteristics were not significantly associated with mRS or length of hospitalization. CONCLUSION: Early immunomodulatory therapy and normal sleep spindles are associated with better functional outcome in children with ANE

    Multimodal Assessment of Cerebral Autoregulation and Autonomic Function After Pediatric Cerebral Arteriovenous Malformation Rupture

    No full text
    BACKGROUND: Management after cerebral arteriovenous malformation (AVM) rupture aims toward preventing hemorrhagic expansion while maintaining cerebral perfusion to avoid secondary injury. We investigated associations of model-based indices of cerebral autoregulation (CA) and autonomic function (AF) with outcomes after pediatric cerebral AVM rupture. METHODS: Multimodal neurologic monitoring data from the initial 3 days after cerebral AVM rupture were retrospectively analyzed in children (\u3c 18 years). AF indices included standard deviation of heart rate (HRsd), root-mean-square of successive differences in heart rate (HRrmssd), low-high frequency ratio (LHF), and baroreflex sensitivity (BRS). CA indices include pressure reactivity index (PRx), wavelet pressure reactivity indices (wPRx and wPRx-thr), pulse amplitude index (PAx), and correlation coefficient between intracranial pressure pulse amplitude and cerebral perfusion pressure (RAC). Percent time of cerebral perfusion pressure (CPP) below lower limits of autoregulation (LLA) was also computed for each CA index. Primary outcomes were determined using Pediatric Glasgow Outcome Score Extended-Pediatrics (GOSE-PEDs) at 12 months and acquired epilepsy. Association of biomarkers with outcomes was investigated using linear regression, Wilcoxon signed-rank, or Chi-square. RESULTS: Fourteen children were analyzed. Lower AF indices were associated with poor outcomes (BRS [p = 0.04], HRsd [p = 0.04], and HRrmssd [p = 0.00]; and acquired epilepsy (LHF [p = 0.027]). Higher CA indices were associated with poor outcomes (PRx [p = 0.00], wPRx [p = 0.00], and wPRx-thr [p = 0.01]), and acquired epilepsy (PRx [p = 0.02] and wPRx [p = 0.00]). Increased time below LLA was associated with poor outcome (percent time below LLA based on PRx [p = 0.00], PAx [p = 0.04], wPRx-thr [p = 0.03], and RAC [p = 0.01]; and acquired epilepsy (PRx [p = 0.00], PAx [p = 0.00], wPRx-thr [p = 0.03], and RAC [p = 0.01]). CONCLUSIONS: After pediatric cerebral AVM rupture, poor outcomes are associated with AF and CA when applying various neurophysiologic model-based indices. Prospective work is needed to assess these indices of CA and AF in clinical decision support

    Quantitative Electroencephalography After Pediatric Anterior Circulation Stroke

    No full text
    OBJECTIVE: Regional differences were investigated in quantitative EEG (QEEG) characteristics and associations of QEEG to hemodynamics after pediatric acute stroke. METHODS: Quantitative EEG was analyzed, including power in delta, theta, alpha, and beta bands, alpha-delta power ratio, total power, and spectral edge frequency from 11 children with unilateral, anterior circulation strokes during the first 24 hours of continuous EEG recording. Differences between injured and uninjured hemispheres were assessed using multivariate dynamic structural equations modeling. Dynamic structural equations modeling was applied to six children with hemorrhagic stroke undergoing arterial blood pressure, heart rate, and cerebral oximetry monitoring to investigate associations between hemodynamics with QEEG adjacent to anterior circulation regions. RESULTS: All patients with acute ischemic stroke (n = 5) had lower alpha and beta power and spectral edge frequency on injured compared with uninjured regions. This was not consistent after hemorrhagic stroke (n = 6). All hemorrhagic stroke patients demonstrated negative association of total power with arterial blood pressure within injured regions. No consistency was observed for direction or strength of association in other QEEG measures to arterial blood pressure nor were such consistent relationships observed for any QEEG measure studied in relation to heart rate or cerebral oximetry. CONCLUSIONS: After pediatric anterior circulation acute ischemic stroke, reduced spectral edge frequency and alpha and beta power can be observed on injured as compared with noninjured regions. After pediatric anterior circulation hemorrhagic stroke, total power can be negatively associated with arterial blood pressure within injured regions. Larger studies are needed to understand conditions in which QEEG patterns manifest and relate to hemodynamics and brain penumbra

    Quantitative Electroencephalography After Pediatric Anterior Circulation Stroke

    No full text
    OBJECTIVE: Regional differences were investigated in quantitative EEG (QEEG) characteristics and associations of QEEG to hemodynamics after pediatric acute stroke. METHODS: Quantitative EEG was analyzed, including power in delta, theta, alpha, and beta bands, alpha-delta power ratio, total power, and spectral edge frequency from 11 children with unilateral, anterior circulation strokes during the first 24 hours of continuous EEG recording. Differences between injured and uninjured hemispheres were assessed using multivariate dynamic structural equations modeling. Dynamic structural equations modeling was applied to six children with hemorrhagic stroke undergoing arterial blood pressure, heart rate, and cerebral oximetry monitoring to investigate associations between hemodynamics with QEEG adjacent to anterior circulation regions. RESULTS: All patients with acute ischemic stroke (n = 5) had lower alpha and beta power and spectral edge frequency on injured compared with uninjured regions. This was not consistent after hemorrhagic stroke (n = 6). All hemorrhagic stroke patients demonstrated negative association of total power with arterial blood pressure within injured regions. No consistency was observed for direction or strength of association in other QEEG measures to arterial blood pressure nor were such consistent relationships observed for any QEEG measure studied in relation to heart rate or cerebral oximetry. CONCLUSIONS: After pediatric anterior circulation acute ischemic stroke, reduced spectral edge frequency and alpha and beta power can be observed on injured as compared with noninjured regions. After pediatric anterior circulation hemorrhagic stroke, total power can be negatively associated with arterial blood pressure within injured regions. Larger studies are needed to understand conditions in which QEEG patterns manifest and relate to hemodynamics and brain penumbra

    Intrathecal magnesium delivery for Mg++-insensitive NMDA receptor activity due to GRIN1 mutation

    No full text
    Abstract Background Mutations in the NMDA receptor are known to disrupt glutamatergic signaling crucial for early neurodevelopment, often leading to severe global developmental delay/intellectual disability, epileptic encephalopathy, and cerebral palsy phenotypes. Both seizures and movement disorders can be highly treatment-refractory. Results We describe a targeted ABA n-of-1 treatment trial with intrathecal MgSO4, rationally designed based on the electrophysiologic properties of this gain of function mutation in the GRIN1 NMDA subunit. Conclusion Although the invasive nature of the trial necessitated a short-term, non-randomized, unblinded intervention, quantitative longitudinal neurophysiologic monitoring indicated benefit, providing class II evidence in support of intrathecal MgSO4 for select forms of GRIN disorders
    corecore