75 research outputs found

    Agricultural Dust Derived Bacterial Extracellular Vesicle Mediated Inflammation is Attenuated by DHA

    Get PDF
    Dietary long-chain omega-3 polyunsaturated fatty acids (n-3 PUFA) and their pro-resolving metabolites are protective against atherosclerotic disease, and ameliorate systemic inflammatory conditions including lupus erythematosus, psoriasis, and bronchial asthma. Organic bioaerosol inhalation is a common and injurious hazard associated with agricultural occupations such as work in swine concentrated animal feeding operations (CAFOs) and is known to increase the risk for developing respiratory conditions such as asthma and COPD. Nearly all cells secrete membrane-bound vesicles (extracellular vesicles, EVs) that have the capacity to transmit protein, nucleic acid, and lipid signaling mediators between cells. Using a polymer-based isolation technique (ExoQuick, PEG) followed by ultracentrifugation, EVs were isolated from CAFO dust extracts, and were quantified and partially characterized. Here, we investigated the role of the n-3 PUFA docosahexaenoic acid (DHA) as a component of n-6 to n-3 PUFA mixtures used to recapitulate physiologically relevant dietary ratios in the resolution of inflammatory injury caused by exposure to EVs carried by agricultural organic dust in vitro. Primary human bronchial epithelial cells, fibroblasts and monocyte-derived macrophages were exposed to EVs isolated from swine CAFO dust. Cells were treated with mixtures of n-6 and n-3 PUFA during recovery from the EV-induced injury. CAFO dust extract (DE) was found to contain EVs that contributed significantly to the overall consequences of exposure to complete DE. DHA-rich PUFA ratios inhibited DE-derived EV-induced proinflammatory cytokine release dose-dependently. DHA-rich PUFA ratios also reversed the damaging effects of EVs on recellularization of lung matrix scaffolds, accelerated wound healing, and stimulated the release of pro-resolution mediators. These results underscore the importance of n-3 PUFA as anti-inflammatory compounds during recovery from EV-laden environmental dust exposure in the context of cellular responses in vitro, warranting future translational studies

    The omega-3 fatty acid docosahexaenoic acid attenuates organic dust-induced airway inflammation.

    Get PDF
    Workers exposed to organic dusts from concentrated animal feeding operations (CAFOs) are at risk for developing airway inflammatory diseases. Available preventative and therapeutic measures for alleviating dust-induced lung disease are inadequate. Because omega-3 fatty acids can mitigate inflammatory processes, we aimed to determine whether nutritional supplementation with the omega-3 fatty acid docosahexaenoic acid (DHA) could reduce the airway inflammatory consequences of exposures to organic dust. Aqueous extracts of organic dusts from swine CAFOs (ODE) were utilized. In DHA-pretreated human bronchial epithelial cells, lung fibroblasts, monocyte cell cultures, and precision-cut murine lung slices, we found that DHA pretreatment dose-dependently decreased ODE-induced inflammatory cytokine production. To determine the in vivo significance of DHA, C57BL/6 mice were orally administered DHA for seven days prior to treatment with intranasal ODE or saline inhalations. Animals treated with 2 mg DHA demonstrated significant reductions in ODE-induced bronchial alveolar lavage neutrophil influx and pro-inflammatory cytokine/chemokine production compared to mice exposed to ODE alone. Collectively, these data demonstrate that DHA affects several lung cells to reduce the airway inflammatory response to organic dust exposures. Dietary supplementation with DHA may be an effective therapeutic strategy to reduce the airway inflammatory consequences in individuals exposed to agriculture dust environments

    Saturated Fat Intake Is Associated with Lung Function in Individuals with Airflow Obstruction: Results from NHANES 2007⁻2012

    Get PDF
    Nutritional status is a well-recognized prognostic indicator in chronic obstructive pulmonary disease (COPD); however, very little is known about the relationship between lung function and saturated fat intake. We used data from the cross-sectional National Health and Nutrition Examination Surveys (NHANES) to assess the relationship between saturated fatty acid (SFA) intake and lung function in the general US adult population. Adults in NHANES (2007⁻2012) with pre-bronchodilator spirometry measurements and dietary SFA intake were included. Primary outcomes were lung function including forced expiratory volume in one second (FEV₁

    Maresin-1 reduces the pro-inflammatory response of bronchial epithelial cells to organic dust

    Get PDF
    BACKGROUND: Exposure to organic dust causes detrimental airway inflammation. Current preventative and therapeutic measures do not adequately treat resulting disease, necessitating novel therapeutic interventions. Recently identified mediators derived from polyunsaturated fatty acids exhibit anti-inflammatory and pro-resolving actions. We tested the potential of one of these mediators, maresin-1 (MaR1), in reducing organic dust-associated airway inflammation. METHODS: As bronchial epithelial cells (BECs) are pivotal in initiating organic dust-induced inflammation, we investigated the in vitro effects of MaR1 on a human BEC cell line (BEAS-2B). Cells were pretreated for 1 hour with 0–200 nM MaR1, followed by 1–24 hour treatment with 5% hog confinement facility-derived organic dust extract (HDE). Alternatively, a mouse lung slice model was utilized in supportive cytokine studies. Supernatants were harvested and cytokine levels determined via enzyme-linked immunosorbent assays. Epithelial cell protein kinase C (PKC) isoforms α and ϵ, and PKA activities were assessed via radioactivity assays, and NFκB and MAPK-related signaling mechanisms were investigated using luciferase vector reporters. RESULTS: MaR1 dose-dependently reduced IL-6 and IL-8 production following HDE treatment of BECs. MaR1 also reduced HDE-stimulated cytokine release including TNF-α in a mouse lung slice model when given before or following HDE treatment. Previous studies have established that HDE sequentially activates epithelial PKCα and PKCϵ at 1 and 6 hours, respectively that regulated TNF-α, IL-6, and IL-8 release. MaR1 pretreatment abrogated these HDE-induced PKC activities. Furthermore, HDE treatment over a 24-hour period revealed temporal increases in NFκB, AP-1, SP-1, and SRE DNA binding activities, using luciferase reporter assays. MaR1 pretreatment did not alter the activation of NFκB, AP-1, or SP-1, but did reduce the activation of DNA binding at SRE. CONCLUSIONS: These observations indicate a role for MaR1 in attenuating the pro-inflammatory responses of BECs to organic dust extract, through a mechanism that does not appear to rely on reduced NFκB, AP-1, or SP-1-related signaling, but may be mediated partly through SRE-related signaling. These data offer insights for a novel mechanistic action of MaR1 in bronchial epithelial cells, and support future in vivo studies to test MaR1’s utility in reducing the deleterious inflammatory effects of environmental dust exposures

    A High Docosahexaenoic Acid Diet Alters the Lung Inflammatory Response to Acute Dust Exposure

    Get PDF
    Agricultural workers are at risk for the development of acute and chronic lung diseases due to their exposure to organic agricultural dusts. A diet intervention using the omega-3 fatty acid docosahexaenoic acid (DHA) has been shown to be an effective therapeutic approach for alleviating a dust-induced inflammatory response. We thus hypothesized a high-DHA diet would alter the dust-induced inflammatory response through the increased production of specialized pro-resolving mediators (SPMs). Mice were pre-treated with a DHA-rich diet 4 weeks before being intranasally challenged with a single dose of an extract made from dust collected from a concentrated swine feeding operation (HDE). This omega-3-fatty-acid-rich diet led to reduced arachidonic acid levels in the blood, enhanced macrophage recruitment, and increased the production of the DHA-derived SPM Resolvin D1 (RvD1) in the lung following HDE exposure. An assessment of transcript-level changes in the immune response demonstrated significant differences in immune pathway activation and alterations of numerous macrophage-associated genes among HDE-challenged mice fed a high DHA diet. Our data indicate that consuming a DHA-rich diet leads to the enhanced production of SPMs during an acute inflammatory challenge to dust, supporting a role for dietary DHA supplementation as a potential therapeutic strategy for reducing dust-induced lung inflammation

    Omega-3 Fatty Acid-Derived Resolvin D2 Regulates Human Placental Vascular Smooth Muscle and Extravillous Trophoblast Activities

    Get PDF
    Omega-3 fatty acids are important to pregnancy and neonatal development and health. One mechanism by which omega-3 fatty acids exert their protective effects is through serving as substrates for the generation of specialized pro-resolving lipid mediators (SPM) that potently limit and resolve inflammatory processes. We recently identified that SPM levels are increased in maternal blood at delivery as compared to umbilical cord blood, suggesting the placenta as a potential site of action for maternal SPM. To explore this hypothesis, we obtained human placental samples and stained for the SPM resolvin D2 (RvD2) receptor GPR18 via immunohistochemistry. In so doing, we identified GPR18 expression in placental vascular smooth muscle and extravillous trophoblasts of the placental tissues. Using in vitro culturing, we confirmed expression of GPR18 in these cell types and further identified that stimulation with RvD2 led to significantly altered responsiveness (cytoskeletal changes and pro-inflammatory cytokine production) to lipopolysaccharide inflammatory stimulation in human umbilical artery smooth muscle cells and placental trophoblasts. Taken together, these findings establish a role for SPM actions in human placental tissue
    corecore