550 research outputs found

    Neural circuitry governing anxious individuals’ mis-allocation of working memory to threat

    Get PDF
    Dispositional anxiety is a trait-like phenotype that confers increased risk for a range of debilitating neuropsychiatric disorders. Like many patients with anxiety disorders, individuals with elevated levels of dispositional anxiety are prone to intrusive and distressing thoughts in the absence of immediate threat. Recent electrophysiological research suggests that these symptoms are rooted in the misallocation of working memory (WM) resources to threat-related information. Here, functional MRI was used to identify the network of brain regions that support WM for faces and to quantify the allocation of neural resources to threat-related distracters in 81 young adults. Results revealed widespread evidence of mis-allocation. This was evident in both face-selective regions of the fusiform cortex and domain-general regions of the prefrontal and parietal cortices. This bias was exaggerated among individuals with a more anxious disposition. Mediation analyses provided compelling evidence that anxious individuals’ tendency to mis-allocate WM resources to threat-related distracters is statistically explained by heightened amygdala reactivity. Collectively, these results provide a neurocognitive framework for understanding the pathways linking anxious phenotypes to the development of internalizing psychopathology and set the stage for developing improved intervention strategies

    Moderating Effects of Harm Avoidance on Resting State Functional Connectivity of the Anterior Insula

    Get PDF
    As an index of behavioral inhibition and an individual’s propensity to avoid, rather than seek, potentially dangerous situations, harm avoidance has been linked to internalizing psychopathology. Altered connectivity within intrinsic functional neural networks (i.e., default mode [DMN], central executive [CEN] and salience networks [SN]) has been related to internalizing psychopathology; however, less is known about the effects of harm avoidance on functional connectivity within and between these networks. Importantly, harm avoidance may be distinguishable from trait anxiety and have clinical relevance as a risk factor for internalizing psychopathology. A sample of young adults (n = 99) completed a resting state functional magnetic resonance imaging (fMRI) scan and self-report measures of harm avoidance and trait anxiety. Whole brain seed-to-voxel and seed-to-network connectivity analyses were conducted using anterior insula seeds to examine associations between harm avoidance/trait anxiety and connectivity. After adjusting for sex and age, there was a significant negative effect of harm avoidance on connectivity between the anterior insula and clusters in the precuneus/posterior cingulate cortex (PCC) left superior/middle frontal gyrus, dorsal anterior cingulate cortex (dACC) and bilateral inferior parietal lobule (IPL)/angular gyrus. Seed-to-network analyses indicated a negative effect of harm avoidance on connectivity between the right anterior insula and anterior and posterior DMN. There were no effects of trait anxiety on functional connectivity of the anterior insula. Overall, the results indicate that individual differences in harm avoidance relate to disruptions in internetwork connectivity that may contribute to deficits in appropriately modulating attentional focus

    Latent stem and progenitor cells in the hippocampus are activated by neural excitation

    Get PDF
    The regulated production of neurons in the hippocampus throughout life underpins important brain functions such as learning and memory. Surprisingly, however, studies have so far failed to identify a resident hippocampal stem cell capable of providing the renewable source of these neurons. Here, we report that depolarizing levels of KCl produce a threefold increase in the number of neurospheres generated from the adult mouse hippocampus. Most interestingly, however, depolarizing levels of KCl led to the emergence of a small subpopulation of precursors (approximately eight per hippocampus) with the capacity to generate very large neurospheres (>250 µm in diameter). Many of these contained cells that displayed the cardinal properties of stem cells: multipotentiality and self-renewal. In contrast, the same conditions led to the opposite effect in the other main neurogenic region of the brain, the subventricular zone, in which neurosphere numbers decreased by ~40% in response to depolarizing levels of KCl. Most importantly, we also show that the latent hippocampal progenitor population can be activated in vivo in response to prolonged neural activity found in status epilepticus. This work provides the first direct evidence of a latent precursor and stem cell population in the adult hippocampus, which is able to be activated by neural activity. Because the latent population is also demonstrated to reside in the aged animal, defining the precise mechanisms that underlie its activation may provide a means to combat the cognitive deficits associated with a decline in neurogenesis

    T Lymphocytes Contribute to the Control of Baseline Neural Precursor Cell Proliferation but Not the Exercise-Induced Up-Regulation of Adult Hippocampal Neurogenesis

    Get PDF
    Cross-talk between the peripheral immune system and the central nervous system is important for physiological brain health. T cells are required to maintain normal baseline levels of neural precursor proliferation in the hippocampus of adult mice. We show here that neither T cells, B cells, natural killer cells nor natural killer T cells are required for the increase in hippocampal precursor proliferation that occurs in response to physical exercise. In addition, we demonstrate that a subpopulation of T cells, regulatory T cells, is not involved in maintaining baseline levels of neural precursor proliferation. Even when applied at supraphysiological numbers, populations of both naive and stimulated lymphocytes had no effect on hippocampal precursor proliferation in vitro. In addition, physical activity had no effect on peripheral immune cells in terms of distribution in the bone marrow, lymph nodes or spleen, activation state or chemokine receptor (CXCR4 and CCR9) expression. Together these results suggest that lymphocytes are not involved in translating the peripheral effects of exercise to the neurogenic niche in the hippocampus and further support the idea that the exercise-induced regulation of adult neurogenesis is mechanistically distinct from its baseline control

    Interprofessional Team Collaboration for Routine and Emergent Mental Health Concerns Among Collegiate Student-Athletes: A Case Series from the Association for Athletic Training Education Research Network

    Get PDF
    Collegiate student-athletes experience an increasing number of mental health concerns. To help address these concerns and provide high-quality health care for student-athletes, institutions of higher education are being encouraged to create interprofessional health care teams that are specifically dedicated to managing mental health. We interviewed 3 interprofessional health care teams who collaborate to manage routine and emergency mental health conditions in collegiate student-athletes. Teams represented all 3 National Collegiate Athletics Association (NCAA) divisions and included athletic trainers, clinical psychologists, psychiatrists, dietitians and nutritionists, social workers, nurses, and physician assistants (associates). The interprofessional teams indicated that the existing NCAA recommendations helped to solidify members and roles of the mental health care team; however, they all believed their teams would benefit from more counselors and psychiatrists. Teams had different mechanisms for referral and accessing mental health resources on their campuses, which may make on-the-job training for new members of the team an organizational necessity

    Immature doublecortin-positive hippocampal neurons are important for learning but not for remembering

    Get PDF
    It is now widely accepted that hippocampal neurogenesis underpins critical cognitive functions, such as learning and memory. To assess the behavioral importance of adult-born neurons, we developed a novel knock-in mouse model that allowed us to specifically and reversibly ablate hippocampal neurons at an immature stage. In these mice, the diphtheria toxin receptor (DTR) is expressed under control of the doublecortin (DCX) promoter, which allows for specific ablation of immature DCX-expressing neurons after administration of diphtheria toxin while leaving the neural precursor pool intact. Using a spatially challenging behavioral test (a modified version of the active place avoidance test), we present direct evidence that immature DCX-expressing neurons are required for successful acquisition of spatial learning, as well as reversal learning, but are not necessary for the retrieval of stored long-term memories. Importantly, the observed learning deficits were rescued as newly generated immature neurons repopulated the granule cell layer upon termination of the toxin treatment. Repeat (or cyclic) depletion of immature neurons reinstated behavioral deficits if the mice were challenged with a novel task. Together, these findings highlight the potential of stimulating neurogenesis as a means to enhance learning

    The Pakaru ‘Pipeline’: Māori and Pasifika Pathways within the Academy

    Get PDF
    We examine the academic ‘pipeline’ for Māori and Pasifika graduates and illustrate the chronic under-representation of Māori and Pasifika in permanent academic positions in New Zealand universities. We identify areas within higher education where significant opportunities are being lost for the recruitment and retention of Māori and Pasifika. The narratives of Māori and Pasifika post-doctoral researchers, research associates and professional teaching fellows provide further insight into the advantages and disadvantages of these positions. Lastly, we propose a Pacific alternative metaphor ‘Pacific Navigation of Academic Pathways’ based on Pacific navigation, as opposed to the more commonly used term ‘pipeline’, in order to capture the nuances of Pasifika and Māori experiences

    The Pakaru ‘Pipeline’: Māori and Pasifika Pathways within the Academy

    Get PDF
    We examine the academic ‘pipeline’ for Māori and Pasifika graduates and illustrate the chronic under-representation of Māori and Pasifika in permanent academic positions in New Zealand universities. We identify areas within higher education where significant opportunities are being lost for the recruitment and retention of Māori and Pasifika. The narratives of Māori and Pasifika post-doctoral researchers, research associates and professional teaching fellows provide further insight into the advantages and disadvantages of these positions. Lastly, we propose a Pacific alternative metaphor ‘Pacific Navigation of Academic Pathways’ based on Pacific navigation, as opposed to the more commonly used term ‘pipeline’, in order to capture the nuances of Pasifika and Māori experiences

    »Filozofija i kršćanstvo« »Philosophia et christianita«

    Get PDF
    This work was undertaken during T.L. Stephens’s PhD studentship, supported by the Central England Natural Environmental Research Council (NERC) Training Alliance (CENTA) [award reference: 1503848]. The authors would like to thank Nicolas Le Corvec and an anonymous reviewer for their helpful comments during the reviewing process. Additionally we would like to thank Craig Magee, Atsushi Yamaji, and an anonymous reviewer for their constructive reviews on an earlier version of the manuscript.Peer reviewedPublisher PD

    Moderating Effects of Harm Avoidance on Resting-State Functional Connectivity of the Anterior Insula

    Get PDF
    As an index of behavioral inhibition and an individual’s propensity to avoid, rather than seek, potentially dangerous situations, harm avoidance has been linked to internalizing psychopathology. Altered connectivity within intrinsic functional neural networks (i.e., default mode [DMN], central executive [CEN] and salience networks [SN]) has been related to internalizing psychopathology; however, less is known about the effects of harm avoidance on functional connectivity within and between these networks. Importantly, harm avoidance may be distinguishable from trait anxiety and have clinical relevance as a risk factor for internalizing psychopathology. A sample of young adults (n = 99) completed a resting state functional magnetic resonance imaging (fMRI) scan and self-report measures of harm avoidance and trait anxiety. Whole brain seed-to-voxel and seed-to-network connectivity analyses were conducted using anterior insula seeds to examine associations between harm avoidance/trait anxiety and connectivity. After adjusting for sex and age, there was a significant negative effect of harm avoidance on connectivity between the anterior insula and clusters in the precuneus/posterior cingulate cortex (PCC) left superior/middle frontal gyrus, dorsal anterior cingulate cortex (dACC) and bilateral inferior parietal lobule (IPL)/angular gyrus. Seed-to-network analyses indicated a negative effect of harm avoidance on connectivity between the right anterior insula and anterior and posterior DMN. There were no effects of trait anxiety on functional connectivity of the anterior insula. Overall, the results indicate that individual differences in harm avoidance relate to disruptions in internetwork connectivity that may contribute to deficits in appropriately modulating attentional focus
    corecore