60 research outputs found

    NuRD and CAF-1-mediated silencing of the D4Z4 array is modulated by DUX4-induced MBD3L proteins

    Get PDF
    Functional Genomics of Muscle, Nerve and Brain Disorder

    Systemic delivery of a DUX4-targeting antisense oligonucleotide to treat facioscapulohumeral muscular dystrophy

    Get PDF
    Facioscapulohumeral muscular dystrophy (FSHD) is one of the most prevalent skeletal muscle dystrophies. Skeletal muscle pathology in individuals with FSHD is caused by inappropriate expression of the transcription factor DUX4, which activates different myotoxic pathways. At the moment there is no molecular therapy that can delay or prevent skeletal muscle wasting in FSHD. In this study, a systemically delivered antisense oligonucleotide (ASO) targeting the DUX4 transcript was tested in vivo in ACTA1-MCM;FLExDUX4 mice that express DUX4 in skeletal muscles. We show that the DUX4 ASO was well tolerated and repressed the DUX4 transcript, DUX4 protein, and mouse DUX4 target gene expression in skeletal muscles. In addition, the DUX4 ASO alleviated the severity of skeletal muscle pathology and partially prevented the dysregulation of inflammatory and extracellular matrix genes. DUX4 ASOtreated ACTA1-MCM;FLExDUX4 mice performed better on a treadmill; however, the hanging grid and four-limb grip strength tests were not improved compared to control ASOtreated ACTA1-MCM;FLExDUX4 mice. This study shows that systemic delivery of ASOs targeting DUX4 is a promising therapeutic strategy for FSHD and strategies that further improve the ASO efficacy in skeletal muscle are warranted.Functional Genomics of Muscle, Nerve and Brain Disorder

    Longitudinal measures of RNA expression and disease activity in FSHD muscle biopsies

    Get PDF
    Advances in understanding the pathophysiology of facioscapulohumeral dystrophy (FSHD) have led to the discovery of candidate therapeutics, and it is important to identify markers of disease activity to inform clinical trial design. For drugs that inhibit DUX4 expression, measuring DUX4 or DUX4-target gene expression might be an interim measure of drug activity; however, only a subset of FHSD muscle biopsies shows evidence of DUX4 expression. Our prior study showed that MRI T2-STIR-positive muscles had a higher probability of showing DUX4 expression than muscles with normal MRI characteristics. In the current study, we performed a 1-year follow-up assessment of the same muscle with repeat MRI and muscle biopsy. There was little change in MRI characteristics over the 1-year period and, similar to the initial evaluation, MRI T2-STIR-postive muscles had a higher expression of DUX4-regulated genes, as well as genes associated with inflammation, extracellular matrix and cell cycle. Compared to the initial evaluation, overall the level of expression in these gene categories remained stable over the 1-year period; however, there was some variability for each individual muscle biopsied. The pooled data from both the initial and 1-year follow-up evaluations identified several FSHD subgroups based on gene expression, as well as a set of genes-composed of DUX4-target genes, inflammatory and immune genes and cell cycle control genes-that distinguished all of the FSHD samples from the controls. These candidate markers of disease activity need to be replicated in independent datasets and, if validated, may provide useful measures of disease progression and response to therapy.Functional Genomics of Muscle, Nerve and Brain Disorder

    A proteomics study identifying interactors of the FSHD2 gene product SMCHD1 reveals RUVBL1-dependent DUX4 repression

    Get PDF
    Structural Maintenance of Chromosomes Hinge Domain Containing 1 (SMCHD1) is a chromatin repressor, which is mutated in > 95% of Facioscapulohumeral dystrophy (FSHD) type 2 cases. In FSHD2, SMCHD1 mutations ultimately result in the presence of the cleavage stage transcription factor DUX4 in muscle cells due to a failure in epigenetic repression of the D4Z4 macrosatellite repeat on chromosome 4q, which contains the DUX4 locus. While binding of SMCHD1 to D4Z4 and its necessity to maintain a repressive D4Z4 chromatin structure in somatic cells are well documented, it is unclear how SMCHD1 is recruited to D4Z4, and how it exerts its repressive properties on chromatin. Here, we employ a quantitative proteomics approach to identify and characterize novel SMCHD1 interacting proteins, and assess their functionality in D4Z4 repression. We identify 28 robust SMCHD1 nuclear interactors, of which 12 are present in D4Z4 chromatin of myocytes. We demonstrate that loss of one of these SMCHD1 interacting proteins, RuvB-like 1 (RUVBL1), further derepresses DUX4 in FSHD myocytes. We also confirm the interaction of SMCHD1 with EZH inhibitory protein (EZHIP), a protein which prevents global H3K27me3 deposition by the Polycomb repressive complex PRC2, providing novel insights into the potential function of SMCHD1 in the repression of DUX4 in the early stages of embryogenesis. The SMCHD1 interactome outlined herein can thus provide further direction into research on the potential function of SMCHD1 at genomic loci where SMCHD1 is known to act, such as D4Z4 repeats, the inactive X chromosome, autosomal gene clusters, imprinted loci and telomeres.Cancer Signaling networks and Molecular Therapeutic

    Hemopoietic stem cells transplantation does not restore dystrophin expression in Duchenne muscular dystrophy in dogs

    No full text
    Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene on the X-chromosome that result in skeletal and cardiac muscle damage and premature death. Studies in mice, including the mdx mouse model of DMD, have demonstrated that circulating bone marrow-derived cells can participate in skeletal muscle regeneration, but the potential clinical utility of treating human DMD by allogeneic marrow transplantation from a healthy donor remains unknown. To assess whether allogeneic hematopoietic cell transplantation (HCT) provides clinically relevant levels of donor muscle cell contribution in dogs with canine X-linked muscular dystrophy (c-xmd), 7 xmd dogs were given hematopoietic cell (HC) transplants from nonaffected littermates. Compared with the pretransplantation baseline, the number of dystrophin-positive fibers and the amount of wild-type dystrophin RNA did not increase after HCT, with observation periods ranging from 28 to 417 days. Similar results were obtained when the recipient dogs were given granulocyte colony-stimulating factor (G-CSF) after their initial transplantation to mobilize the cells. Despite successful allogeneic HCT and a permissive environment for donor muscle engraftment, there was no detectable contribution of bone marrow-derived cells to either skeletal muscle or muscle precursor cells assayed by clonal analyses at a level of sensitivity that should detect as little as 0.1% donor contribution

    Facioscapulohumeral muscular dystrophy and DUX4: breaking the silence

    No full text
    Mechanisms of disease, diagnostics and therap

    Genetic and epigenetic contributors to FSHD

    No full text
    Functional Genomics of Muscle, Nerve and Brain Disorder
    corecore