106 research outputs found

    Probing signatures of bounce inflation with current observations

    Full text link
    The aim of this paper is to probe the features of the bouncing cosmology with the current observational data. Basing on bounce inflation model, with high derivative term, we propose a general parametrization of primordial power spectrum which includes the typical bouncing parameters, such as bouncing time-scale, and energy scale. By applying Markov Chain Monto Carlo analysis with current data combination of Planck 2015, BAO and JLA, we report the posterior probability distributions of the parameters. We find that, bouncing models can well explain CMB observations, especially the deficit and oscillation on large scale in TT power spectrum.Comment: 17 pages, 8 figure

    A Detailed Study of Massive Galaxies in a Protocluster at z=3.13

    Get PDF
    We present a detailed study of Near-IR selected galaxies in a protocluster field at z = 3.13. Protocluster galaxies are selected using the available mutliwavelength data with the photometric redshift (photo-z) at 2.9 < z < 3.3, reaching a mass completeness of ~10^10 M_sun. Diverse types of galaxies have been found in the field including normal star-forming galaxies, quiescent galaxies and dusty star-forming galaxies. The photo-z galaxies form two large overdense structures in the field, largely overlapping with the previously identified galaxy overdensities traced by Ly{\alpha} emitters (LAEs) and Lyman break galaxies (LBGs) respectively. The northern overdensity consists of a large fraction of old and/or dusty galaxy populations, while the southern one is mainly composed of normal star-forming galaxies which are spatially correlated with the LAEs. This agrees with our previous study arguing the spatial offset of different galaxy overdensities may be due to halo assembly bias. Given the large end-to-end sizes of the two overdensities, one possibility is that they will form into a supercluster by the present day. We also find strong evidence that the star-formation activities of the galaxies in the overdense protocluster regions are enhanced in comparison to their field counterparts, which suggests an accelerated mass assembly in this protocluster.Comment: 19 pages, 8 figures, accepted for publication in Ap

    Accelerated galaxy growth and environmental quenching in a protocluster at z=3.24

    Get PDF
    We present a multiwavelength study of galaxies around D4UD01, a spectroscopically confirmed protocluster at z = 3.24 to investigate environmental trends. 450 galaxies are selected based on Ks band detection with photometric redshifts (photo-z) at 3.0 < z < 3.4, among which ~ 12% are classified as quiescent galaxies. The quiescent galaxies are among the most massive and reddest ones in the entire sample. We identify a large photo-z galaxy overdensity in the field, which lies close to the previously spectroscopically confirmed sources of the protocluster. We find that the quiescent galaxies are largely concentrated in the overdense protocluster region with a higher quiescent fraction, showing a sign of environmental quenching. Galaxies in the protocluster are forming faster than the field counterparts as seen in the stellar mass function, suggesting early and accelerated mass assembly in the overdense regions. Although weak evidence of suppressed star-formation is found in the protocluster, the statistics are not significant enough to draw a definite conclusion. Our work shed light on how the formation of massive galaxies is affected in the dense region of a protocluster when the Universe was only 2 Gyr old.Comment: 16 pages, 7 figures, accepted to Ap

    Periodic Solutions of Multispecies Mutualism System with Infinite Delays

    Get PDF
    We studied the delayed periodic mutualism system with Gilpin-Ayala effect. Some new and interesting sufficient conditions are obtained to guarantee the existence of periodic solution for the multispecies mutualism system with infinite delays. Our method is based on Mawhin's coincidence degree. To the best knowledge of the authors, there is no paper considering the existence of periodic solutions for n-species mutualism system with infinite delays

    Comparison of different predictive biomarker testing assays for PD-1/PD-L1 checkpoint inhibitors response: a systematic review and network meta-analysis

    Get PDF
    BackgroundAccurate prediction of efficacy of programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) checkpoint inhibitors is of critical importance. To address this issue, a network meta-analysis (NMA) comparing existing common measurements for curative effect of PD-1/PD-L1 monotherapy was conducted.MethodsWe searched PubMed, Embase, the Cochrane Library database, and relevant clinical trials to find out studies published before Feb 22, 2023 that use PD-L1 immunohistochemistry (IHC), tumor mutational burden (TMB), gene expression profiling (GEP), microsatellite instability (MSI), multiplex IHC/immunofluorescence (mIHC/IF), other immunohistochemistry and hematoxylin-eosin staining (other IHC&amp;HE) and combined assays to determine objective response rates to anti–PD-1/PD-L1 monotherapy. Study-level data were extracted from the published studies. The primary goal of this study was to evaluate the predictive efficacy and rank these assays mainly by NMA, and the second objective was to compare them in subgroup analyses. Heterogeneity, quality assessment, and result validation were also conducted by meta-analysis.Findings144 diagnostic index tests in 49 studies covering 5322 patients were eligible for inclusion. mIHC/IF exhibited highest sensitivity (0.76, 95% CI: 0.57-0.89), the second diagnostic odds ratio (DOR) (5.09, 95% CI: 1.35-13.90), and the second superiority index (2.86). MSI had highest specificity (0.90, 95% CI: 0.85-0.94), and DOR (6.79, 95% CI: 3.48-11.91), especially in gastrointestinal tumors. Subgroup analyses by tumor types found that mIHC/IF, and other IHC&amp;HE demonstrated high predictive efficacy for non-small cell lung cancer (NSCLC), while PD-L1 IHC and MSI were highly efficacious in predicting the effectiveness in gastrointestinal tumors. When PD-L1 IHC was combined with TMB, the sensitivity (0.89, 95% CI: 0.82-0.94) was noticeably improved revealed by meta-analysis in all studies.InterpretationConsidering statistical results of NMA and clinical applicability, mIHC/IF appeared to have superior performance in predicting response to anti PD-1/PD-L1 therapy. Combined assays could further improve the predictive efficacy. Prospective clinical trials involving a wider range of tumor types are needed to establish a definitive gold standard in future

    BlockEmulator: An Emulator Enabling to Test Blockchain Sharding Protocols

    Full text link
    Numerous blockchain simulators have been proposed to allow researchers to simulate mainstream blockchains. However, we have not yet found a testbed that enables researchers to develop and evaluate their new consensus algorithms or new protocols for blockchain sharding systems. To fill this gap, we develop BlockEmulator, which is designed as an experimental platform, particularly for emulating blockchain sharding mechanisms. BlockEmulator adopts a lightweight blockchain architecture such that developers can only focus on implementing their new protocols or mechanisms. Using layered modules and useful programming interfaces offered by BlockEmulator, researchers can implement a new protocol with minimum effort. Through experiments, we test various functionalities of BlockEmulator in two steps. Firstly, we prove the correctness of the emulation results yielded by BlockEmulator by comparing the theoretical analysis with the observed experiment results. Secondly, other experimental results demonstrate that BlockEmulator can facilitate the measurement of a series of metrics, including throughput, transaction confirmation latency, cross-shard transaction ratio, the queuing size of transaction pools, workload distribution across blockchain shards, etc. We have made BlockEmulator open-source in Github

    Energy exchange dependent transient ferromagnetic like state of ultrafast magnetization dynamics

    Get PDF
    Abstract: The study of laser-induced ultrafast magnetization dynamics is crucial for the development of information recording technology. Due to the complex mechanism, there is still a lack of comprehensive understanding for ultrafast magnetization dynamics. As an essential stage of laser-induced ultrafast magnetization switching process, the transient ferromagnetic like state (TFLS), has attracted much attention. Different from other studies on TFLS through the difference of magnetization dynamics between rare-earth and transition-metal, our study mainly focuses on the influence of energy injection and relaxation on TFLS in the process of ultrafast magnetization dynamics. The influence of various parameters on the formation of energy exchange dependent TFLS is studied. The results of simulation well support our view. Understanding the mechanism behind the TFLS is of great significance to promote the application of laser-induced ultrafast magnetization switching
    • …
    corecore