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We studied the delayed periodic mutualism system with Gilpin-Ayala effect. Some new and interesting sufficient conditions are
obtained to guarantee the existence of periodic solution for the multispecies mutualism system with infinite delays. Our method is
based onMawhin’s coincidence degree. To the best knowledge of the authors, there is no paper considering the existence of periodic
solutions for n-species mutualism system with infinite delays.

1. Introduction

Recently, there are many papers considering the existence
of periodic solutions for competitive Lotka-Volterra system
based on Mawhin’s coincidence degree theory (see [1–4]).
But there are few papers considering the periodicity of
mutualism system; for example, one can refer to [5–7].
However, the references mentioned above only considered
two-dimensional mutualism system. To the best knowledge
of the authors, there is no paper considering the existence of
periodic solutions for 𝑛-species mutualism system. It should
be noted that the method used in [5–7] is difficult to be
extended to the 𝑛-dimensional system. So, we employ the
method used in [2–4]. However, the problem considered
in this paper is completely different from those mentioned
above. On the other hand, the above-mentioned works con-
sidered the models with constant discrete delays or without
delays. In practice, there will be a distribution of transmission
delays. In this case, the transmission of species is no longer
instantaneous and cannot be modelled with discrete delays.
A more appropriate way is to incorporate distributed delays.
Therefore, the studies of the model with distributed delays
have more important significance than the ones of the model

with discrete delays. Thus, in this paper, we considered the
following mutualism system with distributed delays:

̇𝑦
𝑖 (

𝑡) = 𝑦
𝑖 (

𝑡)
[

[

𝑟
𝑖 (

𝑡) − 𝑎
𝑖𝑖 (

𝑡) 𝑦
𝑖
(𝑡)
𝛼𝑖𝑗

(𝑡) +

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑎
𝑖𝑗 (

𝑡) 𝑦

𝛼𝑖𝑗

𝑗
(𝑡)

+

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑏
𝑖𝑗 (

𝑡) 𝑦

𝛽𝑖𝑗

𝑗
(𝑡 − 𝜏
𝑖𝑗
)

+

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑐
𝑖𝑗 (

𝑡) ∫

∞

0

𝐻
𝑖𝑗 (

𝑠) 𝑦

𝛾𝑖𝑗

𝑗
(𝑡 + 𝑠) 𝑑𝑠

]

]

,

𝑖 = 1, 2, . . . 𝑛,

(1)

where 𝑟
𝑖
, 𝑎
𝑖𝑗
, 𝑏
𝑖𝑗
, and 𝑐

𝑖𝑗
, 𝑖, 𝑗 = 1, 2, . . . , 𝑛, are 𝜔-periodic

functions, that is, 𝑟
𝑖
(𝑡 + 𝜔) = 𝑟

𝑖
(𝑡), 𝑎
𝑖𝑗
(𝑡 + 𝜔) = 𝑎

𝑖𝑗
(𝑡),

𝑏
𝑖𝑗
(𝑡 + 𝜔) = 𝑏

𝑖𝑗
(𝑡), and 𝑐

𝑖𝑗
(𝑡 + 𝜔) = 𝑐

𝑖𝑗
(𝑡), and 𝛼

𝑖𝑗
, 𝛽
𝑖𝑗
, and 𝛾

𝑖𝑗
are

constants, 𝑖, 𝑗 = 1, 2, . . . , 𝑛. From biological view, 𝑟
𝑖
, 𝑎
𝑖𝑗
, 𝑏
𝑖𝑗
,

and 𝑐
𝑖𝑗
, 𝑖, 𝑗 = 1, 2, . . . , 𝑛, are nonnegative, ∫

∞

0
𝐻
𝑖𝑗
(𝑠)𝑑𝑠 = 1,
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and 𝑎
𝑖𝑖
is positive. System (1) is associated with the IVP as

follows:

𝑦
𝑖
(𝑡
0
) = 𝑦
0

𝑖
, 𝑦
0

𝑖
> 0, 𝑖 = 1, 2, . . . 𝑛. (2)

2. Existence of Periodic Solutions

For convenience, we introduce some notations, definitions,
and lemmas. If 𝑔(𝑡) is a continuous 𝜔-periodic function
defined on R, denote

𝑔 = min
𝑡∈[0,𝜔]





𝑔 (𝑡)





, 𝑔 = max

𝑡∈[0,𝜔]





𝑔 (𝑡)





,

𝑚 (𝑔) =

1

𝜔

∫

𝜔

0

𝑔 (𝑡) 𝑑𝑡.

(3)

We also denote the spectral radius of the matrix A by 𝜌(A).
Denote

𝑋 = {𝑥 (𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇

∈ 𝐶
1

(R,R𝑛) | 𝑥 (𝑡 + 𝜔) = 𝑥 (𝑡) ∀𝑡 ∈ R} ,

𝑍 = {𝑥 (𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇

∈ 𝐶 (R,R𝑛) | 𝑥 (𝑡 + 𝜔) = 𝑥 (𝑡) ∀𝑡 ∈ R} .

(4)

Lemma 1 (see [8]). LetΩ ⊂ 𝑋 be an open and bounded set. Let
𝐿 be a Fredholm mapping of index zero and 𝑁 be 𝐿-compact
on Ω (i.e., 𝑄𝑁(Ω) is bounded and 𝐾

𝑃
(𝐼 − 𝑄)𝑁 : Ω → 𝑋 is

compact). Assume

(i) for each 𝜆 ∈ (0, 1), 𝑥 ∈ 𝜕Ω ∩ Dom𝐿, 𝐿𝑥 ̸= 𝜆𝑁𝑥;
(ii) for each 𝑥 ∈ 𝜕Ω∩Ker 𝐿, 𝑄𝑁𝑥 ̸= 0 and deg{𝐽𝑄𝑁, Ω∩

Ker 𝐿, 0} ̸= 0.

Then 𝐿𝑥 = 𝑁𝑥 has at least one solution in Ω ∩ Dom𝐿.

Definition 2 (see [9, 10]). A real 𝑛 × 𝑛 matrixA = (𝑎
𝑖𝑗
) is said

to be an 𝑀-matrix if 𝑎
𝑖𝑗

≤ 0, 𝑖, 𝑗 = 1, 2, . . . , 𝑛, 𝑖 ̸= 𝑗, and
A−1 ≥ 0.

Lemma 3 (see [9, 10]). Let A ≥ 0 be an 𝑛 × 𝑛 matrix and
𝜌(A) < 1; then (𝐸

𝑛
− A)
−1

≥ 0, where 𝐸
𝑛
denotes the identity

matrix of size 𝑛.

Theorem 4. Assume the following.

(𝐻
1
) The algebraic equation

𝑓 (𝑢) := (𝑚 (𝑟
𝑖
) − 𝑚 (𝑎

𝑖𝑖
) 𝑢
𝛼𝑖𝑖

𝑖
+

𝑛

∑

𝑗=1

𝑚 (𝑎
𝑖𝑗
) 𝑢

𝛼𝑖𝑗

𝑗

+

𝑛

∑

𝑗=1

𝑚 (𝑏
𝑖𝑗
) 𝑢

𝛽𝑖𝑗

𝑗
+

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑚 (𝑐
𝑖𝑗
) 𝑢

𝛾𝑖𝑗

𝑗
)

𝑛×1

= 0

(5)

has finite solutions (𝑢
∗

1
, 𝑢
∗

2
, . . . , 𝑢

∗

𝑛
)
𝑇

∈ R𝑛
+
with 𝑢

∗

𝑖
> 0 and

∑
𝑢
∗ sgn 𝐽

𝑓
(𝑢
∗
) ̸= 0.

(𝐻
2
) 𝛼
𝑗𝑖

≤ 𝛼
𝑖𝑖
, 𝛽
𝑗𝑖

≤ 𝛼
𝑖𝑖
, 𝛾
𝑗𝑖

≤ 𝛾
𝑖𝑖

(𝑗 ̸= 𝑖), 𝑖, 𝑗 = 1, 2, . . . , 𝑛.
(𝐻
3
) 𝜌(K) < 1, whereK = (Γ

𝑖𝑗
)
𝑛×𝑛

and

Γ
𝑖𝑗

=

{
{

{
{

{

0, 𝑖 = 𝑗,

𝑎
𝑖𝑗

+ 𝑏
𝑖𝑗

+ 𝑐
𝑖𝑗

𝑎
𝑗𝑗

, 𝑖 ̸= 𝑗.

(6)

Then system (1) has at least one positive 𝜔-periodic solution.

Proof. Note that every solution 𝑦(𝑡) = (𝑦
1
(𝑡), 𝑦
2
(𝑡), ...𝑦

𝑛
(𝑡))
𝑇

of system (1) with the initial value condition is positive. Make
the change of variables

𝑦
𝑖 (

𝑡) = 𝑒
𝑥𝑖(𝑡)

, 𝑖 = 1, 2, . . . , 𝑛. (7)

Then system (1) is the same as

𝑥
𝑖 (

𝑡) = 𝑟
𝑖 (

𝑡) − 𝑎
𝑖𝑖 (

𝑡) 𝑒
𝛼𝑖𝑗

(𝑡) +

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑎
𝑖𝑗 (

𝑡) 𝑒
𝛼𝑖𝑗

(𝑡)

+

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑏
𝑖𝑗 (

𝑡) 𝑒
𝛽𝑖𝑗

(𝑡 − 𝜏
𝑖𝑗
)

+

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑐
𝑖𝑗 (

𝑡) ∫

∞

0

𝐻
𝑖𝑗 (

𝑠) 𝑒
𝛾𝑖𝑗

(𝑡 + 𝑠) 𝑑𝑠,

𝑖 = 1, 2, . . . 𝑛.

(8)

Obviously, if system (8) has at least one 𝜔-periodic
solution, then system (1) has at least one 𝜔-periodic solution.
To prove Theorem 4, we should find an appropriate open set
Ω satisfying Lemma 1. We divide the proof into three steps.

Step 1.We verify that (i) of Lemma 1 is satisfied. For any 𝑥(𝑡) ∈

𝑋, by periodicity, it is easy to check that

Δ
𝑖 (

𝑥, 𝑡) = 𝑟
𝑖 (

𝑡) − 𝑎
𝑖𝑖 (

𝑡) 𝑒
𝛼𝑖𝑗

(𝑡) +

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑎
𝑖𝑗 (

𝑡) 𝑒
𝛼𝑖𝑗

(𝑡)

+

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑏
𝑖𝑗 (

𝑡) 𝑒
𝛽𝑖𝑗

(𝑡 − 𝜏
𝑖𝑗
)

+

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑐
𝑖𝑗 (

𝑡) ∫

∞

0

𝐻
𝑖𝑗 (

𝑠) 𝑒
𝛾𝑖𝑗

(𝑡 + 𝑠) 𝑑𝑠.

(9)

And define 𝐿 : Dom𝐿 ⊂ 𝑋 → 𝑍 and𝑁 : 𝑋 → 𝑍 as follows:

𝑋 ∋ 𝑥 (𝑡) → (𝐿𝑥) (𝑡) =

𝑑𝑥 (𝑡)

𝑑𝑡

∈ 𝑍,

𝑋 ∋ 𝑥 (𝑡) →

(𝑁𝑥) (𝑡) = ((𝑁𝑥)
1
(𝑡), (𝑁𝑥)

2
(𝑡), . . . , (𝑁𝑥)

𝑛
(𝑡))
𝑇

∈ 𝑍,

(10)

where

(𝑁𝑥)
𝑖 (

𝑡) = Δ
𝑖 (

𝑥, 𝑡) , 𝑖 = 1, 2, . . . , 𝑛. (11)
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The projectors are defined by 𝑃 : 𝑋 → 𝑋 and 𝑄 : 𝑍 → 𝑍

by

𝑃𝑥 (𝑡) =

1

𝜔

∫

𝜔

0

𝑥 (𝑡) 𝑑𝑡, 𝑄𝑧 (𝑡) =

1

𝜔

∫

𝜔

0

𝑧 (𝑡) 𝑑𝑡,

𝑥 ∈ 𝑋, 𝑧 ∈ 𝑍.

(12)

It is easy to follow that 𝐿 is a Fredholmmapping of index zero.
Furthermore, the generalized inverse (to 𝐿) 𝐾

𝑃
: Im 𝐿 →

Dom𝐿 ∩ Ker𝑃 exists, which is given by

𝐾
𝑃

(𝑦) = ∫

𝑡

0

𝑦 (𝑠) 𝑑𝑠 −

1

𝜔

∫

𝜔

0

∫

𝑡

0

𝑦 (𝑠) 𝑑𝑠 𝑑𝑡. (13)

Then 𝑄𝑁 : 𝑋 → 𝑍 and 𝐾
𝑃
(𝐼 − 𝑄)𝑁 : 𝑋 → 𝑋 are defined

by

𝑄𝑁𝑥 = (

1

𝜔

∫

𝜔

0

Δ
1 (

𝑥, 𝑡) 𝑑𝑡,

1

𝜔

∫

𝜔

0

Δ
2 (

𝑥, 𝑡) 𝑑𝑡,

. . . ,

1

𝜔

∫

𝜔

0

Δ
𝑛
(𝑥, 𝑡)𝑑𝑡)

𝑇

,

𝐾
𝑃 (𝐼 − 𝑄) 𝑁𝑥 = (Ψ

1
(𝑥, 𝑡), Ψ

2
(𝑥, 𝑡), . . . , Ψ

𝑛
(𝑥, 𝑡))

𝑇
,

(14)

where

Ψ
𝑘 (

𝑥, 𝑡) = ∫

𝑡

0

Δ
𝑘 (

𝑥, 𝑠) 𝑑𝑠 −

1

𝜔

∫

𝜔

0

∫

𝑡

0

Δ
𝑘 (

𝑥, 𝑠) 𝑑𝑠 𝑑𝑡

− (

𝑡

𝜔

−

1

2

) ∫

𝜔

0

Δ
𝑘 (

𝑥, 𝑠) 𝑑𝑠, 𝑘 = 1, 2, . . . , 𝑛.

(15)

Using similar arguments to Step 1 in [2], it is easy to show that
(𝐾
𝑃
(𝐼−𝑄)𝑁𝑥)(Ω) is relatively compact in the space (𝑋, ‖⋅‖

1
).

Step 2. In this step, we are in a position to search for an
appropriate open bounded subsetΩ satisfying condition (i) of
Lemma 1. Specifically, our aim is to search for an appropriate
ℎ
𝑖
defined by Ω in Step 1 such that Ω satisfies condition (i) of

Lemma 1. To this end, assume that 𝑥(𝑡) ∈ 𝑋 is a solution of
the equation 𝐿𝑥 = 𝜆𝑁𝑥 for each 𝜆 ∈ (0, 1); that is,

�̇�
𝑖 (

𝑡) = 𝜆
[

[

𝑟
𝑖 (

𝑡) − 𝑎
𝑖𝑖 (

𝑡) 𝑒
𝛼𝑖𝑗

(𝑡) +

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑎
𝑖𝑗 (

𝑡) 𝑒
𝛼𝑖𝑗

(𝑡)

+

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑏
𝑖𝑗 (

𝑡) 𝑒
𝛽𝑖𝑗

(𝑡 − 𝜏
𝑖𝑗
)

+

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑐
𝑖𝑗 (

𝑡) ∫

∞

0

𝐻
𝑖𝑗 (

𝑠) 𝑒
𝛾𝑖𝑗

(𝑡 + 𝑠) 𝑑𝑠
]

]

,

𝑖 = 1, 2, . . . 𝑛.

(16)

Since 𝑥(𝑡) ∈ 𝑋, each 𝑥
𝑖
(𝑡), 𝑖 = 1, 2, . . . , 𝑛, as components of

𝑥(𝑡), is continuously differentiable and 𝜔-periodic. In view of
continuity and periodicity, there exists 𝑡

𝑖
∈ [0, 𝜔] such that

𝑥
𝑖
(𝑡
𝑖
) = max

𝑡∈[0,𝜔]
|𝑥
𝑖
(𝑡)|, 𝑖 = 1, 2, . . . , 𝑛. Accordingly, �̇�

𝑖
(𝑡
𝑖
) =

0 and we arrive at

𝑟
𝑖
(𝑡
𝑖
) − 𝑎
𝑖𝑖

(𝑡
𝑖
) 𝑒
𝛼𝑖𝑖𝑥𝑖(𝑡𝑖)

+

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑎
𝑖𝑗

(𝑡
𝑖
) 𝑒
𝛼𝑖𝑗𝑥𝑗(𝑡𝑖)

+

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑏
𝑖𝑗

(𝑡
𝑖
) 𝑒
𝛽𝑖𝑗𝑥𝑗(𝑡𝑖−𝜏𝑖𝑗)

+

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑐
𝑖𝑗 (

𝑡) ∫

∞

0

𝐻
𝑖𝑗 (

𝑠) 𝑒
𝛾𝑖𝑗𝑥𝑗(𝑡𝑖+𝑠)

𝑑𝑠 = 0,

𝑖 = 1, 2, . . . , 𝑛.

(17)

That is,

𝑎
𝑖𝑖

(𝑡
𝑖
) 𝑒
𝛼𝑖𝑖𝑥𝑖(𝑡𝑖)

= 𝑟
𝑖
(𝑡
𝑖
) +

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑎
𝑖𝑗

(𝑡
𝑖
) 𝑒
𝑥𝑗(𝑡𝑖)

+

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑏
𝑖𝑗

(𝑡
𝑖
) 𝑒
𝛽𝑖𝑗𝑥𝑗(𝑡𝑖−𝜏𝑖𝑗)

+

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑐
𝑖𝑗 (

𝑡) ∫

∞

0

𝐻
𝑖𝑗 (

𝑠) 𝑒
𝛾𝑖𝑗𝑥𝑗(𝑡𝑖+𝑠)

𝑑𝑠, 𝑖 = 1, 2, . . . 𝑛.

(18)

Noticing that 𝑥
𝑗
(𝑡
𝑗
) = max

𝑡∈[0,𝜔]
|𝑥
𝑗
(𝑡)| implies

𝑥
𝑗
(𝑡
𝑖
− 𝜏
𝑖𝑗
) ≤ 𝑥
𝑗
(𝑡
𝑗
) . (19)

It follows from (H2) that

𝑎
𝑖𝑖
𝑒
𝛼𝑖𝑖𝑥𝑖(𝑡𝑖)

≤






𝑎
𝑖𝑖

(𝑡
𝑖
) 𝑒
𝛼𝑖𝑖𝑥𝑖(𝑡𝑖)







=













𝑟
𝑖
(𝑡
𝑖
) +

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑎
𝑖𝑗

(𝑡
𝑖
) 𝑒
𝛼𝑖𝑗𝑥𝑗(𝑡𝑖)

+

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑏
𝑖𝑗

(𝑡
𝑖
) 𝑒
𝛽𝑖𝑗𝑥𝑗(𝑡𝑖−𝜏𝑖𝑗)

+

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑐
𝑖𝑗 (

𝑡) ∫

∞

0

𝐻
𝑖𝑗 (

𝑠) 𝑒
𝛾𝑖𝑗𝑥𝑗(𝑡𝑖+𝑠)

𝑑𝑠













≤ 𝑟
𝑖
+

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑎
𝑖𝑗
𝑒
𝛼𝑖𝑗𝑥𝑗(𝑡𝑖)

+

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑏
𝑖𝑗
𝑒
𝛽𝑖𝑗𝑥𝑗(𝑡𝑖−𝜏𝑖𝑗)

+

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑐
𝑖𝑗 (

𝑡) 𝑒
𝛾𝑖𝑗𝑥𝑗(𝑡𝑖+𝑠)

∫

∞

0

𝐻
𝑖𝑗 (

𝑠) 𝑑𝑠

= 𝑟
𝑖
+

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑎
𝑖𝑗
𝑒
𝛼𝑖𝑗𝑥𝑗(𝑡𝑖)

+

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑏
𝑖𝑗
𝑒
𝛽𝑖𝑗𝑥𝑗(𝑡𝑖−𝜏𝑖𝑗)

+

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑐
𝑖𝑗 (

𝑡) 𝑒
𝛾𝑖𝑗𝑥𝑗(𝑡𝑖+𝑠)

≤ 𝑟
𝑖
+

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑎
𝑖𝑗
𝑒
𝛼𝑗𝑗𝑥𝑗(𝑡𝑗)

+

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑏
𝑖𝑗
𝑒
𝛼𝑗𝑗𝑥𝑗(𝑡𝑗)
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+

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑐
𝑖𝑗 (

𝑡) 𝑒
𝛼𝑗𝑗𝑥𝑗(𝑡𝑗)

= 𝑟
𝑖
+

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

(𝑎
𝑖𝑗

+ 𝑏
𝑖𝑗

+ 𝑐
𝑖𝑗
) 𝑒
𝛼𝑗𝑗𝑥𝑗(𝑡𝑗)

.

(20)

Here we used (H2). Letting (𝑎
𝑖𝑖

+𝑏
𝑖𝑖
)𝑒
𝛼𝑖𝑖𝑥𝑖(𝑡𝑖)

= 𝑧
𝑖
(𝑡
𝑖
), it follows

from (20) that

𝑧
𝑖
(𝑡
𝑖
) ≤ 𝑟
𝑖
+

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

(𝑎
𝑖𝑗

+ 𝑏
𝑖𝑗

+ 𝑐
𝑖𝑗
) 𝑎
−1

𝑗𝑗
𝑧
𝑗
(𝑡
𝑗
) , (21)

or

𝑧
𝑖
(𝑡
𝑖
) −

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑎
𝑖𝑗

+ 𝑏
𝑖𝑗

+ 𝑐
𝑖𝑗

𝑎
𝑗𝑗

𝑧
𝑗
(𝑡
𝑗
) ≤ 𝑟
𝑖
, (22)

which implies

(

(

(

1 −

𝑎
12

+ 𝑏
12

+ 𝑐
12

𝑎
22

⋅ ⋅ ⋅ −

𝑎
1𝑛

+ 𝑏
1𝑛

+ 𝑐
1𝑛

𝑎
𝑛𝑛

−

𝑎
21

+ 𝑏
21

+ 𝑐
21

𝑎
11

1 ⋅ ⋅ ⋅ −

𝑎
2𝑛

+ 𝑏
2𝑛

+ 𝑐
2𝑛

𝑎
𝑛𝑛

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

−

𝑎
𝑛1

+ 𝑏
𝑛1

+ 𝑐
𝑛1

𝑎
11

−

𝑎
𝑛2

+ 𝑏
𝑛2

+ 𝑐
𝑛2

𝑎
22

⋅ ⋅ ⋅ 1

)

)

)

× (

𝑧
1

(𝑡
1
)

𝑧
2

(𝑡
2
)

⋅ ⋅ ⋅

𝑧
𝑛

(𝑡
𝑛
)

) ≤ (

𝑟
1

𝑟
2

⋅ ⋅ ⋅

𝑟
𝑛

)

(23)

Set 𝐷 = (𝐷
1
, 𝐷
2
, . . . , 𝐷

𝑛
)
𝑇

= (𝑟
1
, 𝑟
2
, . . . , 𝑟

𝑛
)
𝑇. It follows from

(23) that

(𝐸 − K) (𝑧
1
(𝑡
1
), 𝑧
2
(𝑡
2
), . . . , 𝑧

𝑛
(𝑡
𝑛
))
𝑇

≤ 𝐷. (24)

In view of 𝜌(K) < 1 and Lemma 3, (𝐸
𝑛

− K)
−1

≥ 0. Let

𝐻 = (
̃
ℎ
1
,
̃
ℎ
2
, . . . ,

̃
ℎ
𝑛
)

𝑇

:= (𝐸 − K)
−1

𝐷 ≥ 0. (25)

Then it follows from (24) and (25) that

(𝑧
1
(𝑡
1
), 𝑧
2
(𝑡
2
), . . . , 𝑧

𝑛
(𝑡
𝑛
))
𝑇

≤ 𝐻, or

𝑧
𝑖
(𝑡
𝑖
) ≤

̃
ℎ
𝑖
, 𝑖 = 1, 2, . . . , 𝑛,

(26)

which implies

|𝑥
𝑖
(𝑡)|
0

= max
𝑡∈[0,𝜔]





𝑥
𝑖 (

𝑡)





= 𝑥
𝑖
(𝑡
𝑖
) ≤

1

𝛼
𝑖𝑖

ln
̃
ℎ
𝑖

𝑎
𝑖𝑖

+ 𝑏
𝑖𝑖

,

𝑖 = 1, 2, . . . , 𝑛.

(27)

On the other hand, it follows from (25) that

(𝐸 − K) 𝐻 = 𝐷, or 𝐻 = K𝐻 + 𝐷, that is,

̃
ℎ
𝑖
=

𝑛

∑

𝑗=1

Γ
𝑖𝑗
̃
ℎ
𝑗

+ 𝐷
𝑖
, 𝑖 = 1, 2, . . . , 𝑛.

(28)

Estimating (16), by using (26) and (28), we have

|�̇�
𝑖
(𝑡)|
0

= 𝜆













𝑟
𝑖 (

𝑡) − 𝑎
𝑖𝑖 (

𝑡) 𝑒
𝛼𝑖𝑖𝑥𝑖(𝑡)

+

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑎
𝑖𝑗 (

𝑡) 𝑒
𝛼𝑖𝑗𝑥𝑗(𝑡)

+

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑏
𝑖𝑗 (

𝑡) 𝑒
𝛽𝑖𝑗𝑥𝑗(𝑡−𝜏𝑖𝑗)

+

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑐
𝑖𝑗 (

𝑡) ∫

∞

0

𝐻
𝑖𝑗 (

𝑠) 𝑒
𝛾𝑖𝑗𝑥𝑗(𝑡𝑖+𝑠)

𝑑𝑠











0

≤ 𝑟
𝑖
+













𝑎
𝑖𝑖 (

𝑡) 𝑒
𝛼𝑖𝑖𝑥𝑖(𝑡𝑖)

+

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑎
𝑖𝑗 (

𝑡) 𝑒
𝛼𝑖𝑗𝑥𝑗(𝑡)

+

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑏
𝑖𝑗 (

𝑡) 𝑒
𝛽𝑖𝑗𝑥𝑗(𝑡𝑗)

+

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑐
𝑖𝑗 (

𝑡) ∫

∞

0

𝐻
𝑖𝑗 (

𝑠) 𝑒
𝛾𝑖𝑗𝑥𝑗(𝑡𝑖+𝑠)

𝑑𝑠











0

= 𝑟
𝑖
+

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑎
𝑖𝑗

+ 𝑏
𝑖𝑗

+ 𝑐
𝑖𝑗

𝑎
𝑗𝑗

𝑧
𝑗
(𝑡
𝑗
) +

𝑎
𝑖𝑖

𝑎
𝑖𝑖

𝑧
𝑖
(𝑡
𝑖
)

≤ 𝐷
𝑖
+

𝑛

∑

𝑗=1

Γ
𝑖𝑗
̃
ℎ
𝑗

+

𝑎
𝑖𝑖

𝑎
𝑖𝑖

𝑧
𝑖
(𝑡
𝑖
) ≤

̃
ℎ
𝑖
+

𝑎
𝑖𝑖

𝑎
𝑖𝑖

̃
ℎ
𝑖

= [1 +

𝑎
𝑖𝑖

𝑎
𝑖𝑖

]
̃
ℎ
𝑖
.

(29)

We can choose a large enough real number (𝑑 > 1) such that

1

𝛼
𝑖𝑖

ln
𝑑

̃
ℎ
𝑖

𝑎
𝑖𝑖

>

1

𝛼
𝑖𝑖

ln
̃
ℎ
𝑖

𝑎
𝑖𝑖

+ [1 +

𝑎
𝑖𝑖

𝑎
𝑖𝑖

]
̃
ℎ
𝑖
. (30)

Let ℎ
𝑖

= (1/𝛼
𝑖𝑖
) ln(𝑑

̃
ℎ
𝑖
/𝑎
𝑖𝑖
). Then, for any solution of 𝐿𝑥 =

𝜆𝑁𝑥, we have |𝑥
𝑖
(𝑡)|
1

= |𝑥
𝑖
(𝑡)|
0

+ |�̇�
𝑖
(𝑡)|
0

≤ ln(
̃
ℎ
𝑖
/𝑎
𝑖𝑖
) + 2

̃
ℎ
𝑖
<

ℎ
𝑖
for all 𝑖 = 1, 2, . . . , 𝑛. Obviously, ℎ

𝑖
are independent of 𝜆

and the choice of 𝑥(𝑡). Thus, taking ℎ
𝑖
= ln(𝑑

̃
ℎ
𝑖
/𝑎
𝑖𝑖
), the open

subset Ω satisfies that 𝐿𝑥 ̸= 𝜆𝑁𝑥 for each 𝜆 ∈ (0, 1), 𝑥 ∈ 𝜕Ω∩

Dom𝐿; that is, the open subset Ω satisfies the assumption (i)
of Lemma 1.

Using similar arguments to Step 3 in [2], it is not difficult
to show that, for each 𝑥 ∈ 𝜕Ω ∩ Ker 𝐿, 𝑄𝑁𝑥 ̸= 0 and
deg{𝐽𝑄𝑁, Ω ∩ Ker 𝐿, 0} ̸= 0.

Hence, by Lemma 1, system (8) has at least one positive
𝜔-periodic solution in Dom𝐿 ∩ Ω. By (7), system (1) has at
least one positive 𝜔-periodic solution, denoted by 𝑦(𝑡). This
completes the proof of Theorem 4.
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