33,760 research outputs found
On the thermal conduction in tangled magnetic fields in clusters of galaxies
Thermal conduction in tangled magnetic fields is reduced because heat
conducting electrons must travel along the field lines longer distances between
hot and cold regions of space than if there were no fields. We consider the
case when the tangled magnetic field has a weak homogeneous component. We
examine two simple models for temperature in clusters of galaxies: a
time-independent model and a time-dependent one. We find that the actual value
of the effective thermal conductivity in tangled magnetic fields depends on how
it is defined for a particular astrophysical problem. Our final conclusion is
that the heat conduction never totally suppressed but is usually important in
the central regions of galaxy clusters, and therefore, it should not be
neglected.Comment: 16 pages, 4 figure
Recommended from our members
The Emerging Role of Ten-Eleven Translocation 1 in Epigenetic Responses to Environmental Exposures.
Mounting evidence from epidemiological studies and animal models has linked exposures to environmental factors to changes in epigenetic markers, especially in DNA methylation. These epigenetic changes may lead to dysregulation of molecular processes and functions and mediate the impact of environmental exposures in complex diseases. However, detailed molecular events that result in epigenetic changes following exposures remain unclear. Here, we review the emerging evidence supporting a critical role of ten-eleven translocation 1 (TET1) in mediating these processes. Targeting TET1 and its associated pathways may have therapeutic potential in alleviating negative impacts of environmental exposures, preventing and treating exposure-related diseases
Interacting Multiple Model-Feedback Particle Filter for Stochastic Hybrid Systems
In this paper, a novel feedback control-based particle filter algorithm for
the continuous-time stochastic hybrid system estimation problem is presented.
This particle filter is referred to as the interacting multiple model-feedback
particle filter (IMM-FPF), and is based on the recently developed feedback
particle filter. The IMM-FPF is comprised of a series of parallel FPFs, one for
each discrete mode, and an exact filter recursion for the mode association
probability. The proposed IMM-FPF represents a generalization of the
Kalmanfilter based IMM algorithm to the general nonlinear filtering problem.
The remarkable conclusion of this paper is that the IMM-FPF algorithm retains
the innovation error-based feedback structure even for the nonlinear problem.
The interaction/merging process is also handled via a control-based approach.
The theoretical results are illustrated with the aid of a numerical example
problem for a maneuvering target tracking application
Radio Frequency Interference Mitigation
Radio astronomy observational facilities are under constant upgradation and
development to achieve better capabilities including increasing the time and
frequency resolutions of the recorded data, and increasing the receiving and
recording bandwidth. As only a limited spectrum resource has been allocated to
radio astronomy by the International Telecommunication Union, this results in
the radio observational instrumentation being inevitably exposed to undesirable
radio frequency interference (RFI) signals which originate mainly from
terrestrial human activity and are becoming stronger with time. RFIs degrade
the quality of astronomical data and even lead to data loss. The impact of RFIs
on scientific outcome is becoming progressively difficult to manage. In this
article, we motivate the requirement for RFI mitigation, and review the RFI
characteristics, mitigation techniques and strategies. Mitigation strategies
adopted at some representative observatories, telescopes and arrays are also
introduced. We also discuss and present advantages and shortcomings of the four
classes of RFI mitigation strategies, applicable at the connected causal
stages: preventive, pre-detection, pre-correlation and post-correlation. The
proper identification and flagging of RFI is key to the reduction of data loss
and improvement in data quality, and is also the ultimate goal of developing
RFI mitigation techniques. This can be achieved through a strategy involving a
combination of the discussed techniques in stages. Recent advances in high
speed digital signal processing and high performance computing allow for
performing RFI excision of large data volumes generated from large telescopes
or arrays in both real time and offline modes, aiding the proposed strategy.Comment: 26 pages, 10 figures, Chinese version accepted for publication in
Acta Astronomica Sinica; English version to appear in Chinese Astronomy and
Astrophysic
Advanced modification of drug nanocrystals by using novel fabrication and downstream approaches for tailor-made drug delivery
Drug nanosuspensions/nanocrystals have been recognized as one useful and successful approach for drug delivery. Drug nanocrystals could be further decorated to possess extended functions (such as controlled release) and designed for special in vivo applications (such as drug tracking), which make best use of the advantages of drug nanocrystals. A lot of novel and advanced size reduction methods have been invented recently for special drug deliveries. In addition, some novel downstream processes have been combined with nanosuspensions, which have highly broadened its application areas (such as targeting) besides traditional routes. A large number of recent research publication regarding as nanocrystals focuses on above mentioned aspects, which have widely attracted attention. This review will focus on the recent development of nanocrystals and give an overview of regarding modification of nanocrystal by some new approaches for tailor-made drug delivery
Theory of time-resolved spectral function in high-temperature superconductors with bosonic modes
We develop a three-temperature model to simulate the time dependence of
electron and phonon temperatures in high-temperature superconductors displaying
strong anistropic electron-phonon coupling. This model not only takes the
tight-binding band structure into account, but also is valid in superconducting
state. Based on this model, we calculate the time-resolved spectral function
via the double-time Green's functions. We find that the dip-hump structure
evolves with the time delay. More interestingly, new phononic structures are
obtained when the phonons are excited by a laser field. This signature may
serve as a direct evidence for electron-vibration mode coupling.Comment: 5 pages, 3 figure
- …