1,536 research outputs found
Observation of subdiffusion of a disordered interacting system
We study the transport dynamics of matter-waves in the presence of disorder
and nonlinearity. An atomic Bose-Einstein condensate that is localized in a
quasiperiodic lattice in the absence of atom-atom interaction shows instead a
slow expansion with a subdiffusive behavior when a controlled repulsive
interaction is added. The measured features of the subdiffusion are compared to
numerical simulations and a heuristic model. The observations confirm the
nature of subdiffusion as interaction-assisted hopping between localized states
and highlight a role of the spatial correlation of the disorder.Comment: 8 pages, to be published on Physical Review Letter
Crack Detectability in Vertical Axis Cooling Pumps During Operation
The problem which is faced in this paper is the analysis of the effects of a transverse propagating crack on the vibrational behaviour of a vertical axis cooling pump. The crack is assumed to develop in a section between the impeller and a seal, which prevents the hot water to flow upwards along the rotor shaft. The pressurized seal is fed with an injection of cold water. Crack initiation may be due to a thermal striping phenomenon. Afterwards, crack growth could be driven by a combination of thermal and mechanical loads, causing alternate cyclic stress in the shaft. Cracking instances of this type have been reported worldwide in several machines of similar design. In this paper, the fact is emphasized that the crack behavior is likely to be influenced by the thermal field and by the water pressure in the cracked area. A dynamical lineshaft model, integrated by an original representation of the crack, has been developed to investigate the possible vibratory symptoms related to a crack propagation. The vibrations are generally measured in correspondence of a rigid coupling which connects the motor shaft to the pump shaft, in position which is rather far away from crack. 1x rev., 2x rev and 3x rev. vibration components, which are generally displayed by the machine condition monitoring system and are the most significative symptoms of the presence of a transverse crack in a rotating shaft, are calculated
Positronium Confinement in Small Cavities: A Two-Particle Model for the Lowering of Contact Density
Positronium (Ps) is widely used as a probe for studying nanometric porosities in condensed matter. Accessible experimental measurements concern annihilation rates by pickoff processes and contact densities (the electron density at the positron position). Existing models for describing Ps properties in small cavities do not justify the lowering of the contact density with respect to that of Ps in vacuum, as found in most materials. We formulate a two-particle model in which only the electron is confined in the cavity, while the positron is moving freely and feels the medium via a positive work function. Our calculation fully explains experimental data for a large class of materials and suggests a way to gain information on pore sizes and positron work functions
Positronium confinement in small cavities : a two-particle model for the lowering of contact density
Positronium (Ps) is widely used as a probe for studying nanometric porosities in condensed matter. Accessible experimental measurements concern annihilation rates by pickoff processes and contact densities (the electron density at the positron position). Existing models for describing Ps properties in small cavities do not justify the lowering of the contact density with respect to that of Ps in vacuum, as found in most materials. We formulate a two-particle model in which only the electron is confined in the cavity, while the positron is moving freely and feels the medium via a positive work function. Our calculation fully explains experimental data for a large class of materials and suggests a way to gain information on pore sizes and positron work functions
Analysis of Acoustic Emission Activity during Progressive Failure in Heterogeneous Materials: Experimental and Numerical Investigation
This work focuses on an experimental and numerical investigation into monitoring damage in a cube-shaped concrete specimen under compression. Experimental monitoring uses acoustic emission (AE) signals acquired by two independent measurement apparatuses, and the same damage process is numerically simulated with the lattice discrete element method (LDEM). The results from the experiment and simulation are then compared in terms of their failure load, final configurations, and the evolution of global parameters based on AE signals, such as the b-value coefficient and the natural time approach. It is concluded that the results from the AE analysis present a significant sensitivity to the characteristics of the acquisition systems. However, natural time methods are more robust for determining such differences, indicating the same general tendency for all three data sets
Quantum diffusion with disorder, noise and interaction
Disorder, noise and interaction play a crucial role in the transport
properties of real systems, but they are typically hard to control and study
both theoretically and experimentally, especially in the quantum case. Here we
explore a paradigmatic problem, the diffusion of a wavepacket, by employing
ultra-cold atoms in a disordered lattice with controlled noise and tunable
interaction. The presence of disorder leads to Anderson localization, while
both interaction and noise tend to suppress localization and restore transport,
although with completely different mechanisms. When only noise or interaction
are present we observe a diffusion dynamics that can be explained by existing
microscopic models. When noise and interaction are combined, we observe instead
a complex anomalous diffusion. By combining experimental measurements with
numerical simulations, we show that such anomalous behavior can be modeled with
a generalized diffusion equation, in which the noise- and interaction-induced
diffusions enter in an additive manner. Our study reveals also a more complex
interplay between the two diffusion mechanisms in regimes of strong interaction
or narrowband noise.Comment: 11 pages, 10 figure
HPV genotypes detected in the oropharyngeal mucosa of HIV-infected men who have sex with men in Northern Italy
The aim of this study was to investigate the epidemiological profile of HPV oropharyngeal infections in HIV-infected men who have sex with men. A total of 135 subjects were enrolled at the L. Sacco University Hospital (Milan, Italy) to evaluate their HPV oropharyngeal infection status at baseline and at a follow-up visit at least 12 months later. HPV DNA was detected from oropharyngeal swabs using an in-house nested PCR that amplifies a segment of the L1 gene. The PCR products were then sequenced and genotyped. A greater percentage of high-risk genotypes was identified compared to low-risk genotypes (13\ub77% vs. 6\ub79%, P < 0\ub705), and two uncommon alpha-HPV genotypes were detected, i.e. HPV-102 and HPV-114. HPV infection prevalence was 24\ub74% and the cumulative incidence was 24\ub71%. During the follow-up period, one case of HPV infection (HPV-33) persisted, while the overall rate of infection clearance was 58\ub73%. HPV oropharyngeal infection was widespread in the cohort examined, and most of the infections were transient and cleared within 12 months. These results may help to clarify the role of HPV in the oropharynx and may also improve our understanding of the need to implement preventive strategies in at-risk populations
BeppoSAX Observations of the TeV Blazar Mkn 421
The blazar Mkn 421 has been observed, as part of the AO1 Core Program, five
times from 2 to 7 May 1997. In the LECS+MECS energy band the spectrum shows
convex curvature, well represented by a broken power--law. Flux variability
(more than a factor 2) has been detected over the entire 0.1--10 keV range,
accompanying which the spectrum steepens with the decrease in intensity. Mkn
421 has also been detected with the PDS instrument. Our preliminary analysis
indicates that the PDS spectrum lies significantly above the extrapolation from
the MECS, suggesting a contribution from a flatter high energy component.Comment: 4 pages, 4 Postscript figures, uses espcrc2.sty and psfig.sty (both
included). To appear in "The Active X-ray Sky: Results from BeppoSAX and
Rossi-XTE", Rome, Italy, 21-24 October, 1997. Eds.: L. Scarsi, H. Bradt, P.
Giommi and F. Fior
- …