58 research outputs found

    Regulatory interactions of αβ and γλ T cells in glomerulonephritis

    Get PDF
    Regulatory interactions of αβ and γλ T cells in glomerulonephritis.BackgroundSeveral lines of evidence suggest that cellular immune mechanisms contribute to glomerulonephritis.MethodsThe roles of αβ and γλ T cells in the pathogenesis of glomerulonephritis were investigated in a model of nephrotoxic nephritis in mice deficient in either T-cell population [T-cell receptor (TCR)β and TCRλ knockout mice]. The model, induced by the injection of rabbit anti-mouse glomerular basement membrane antibody, is characterized by the development of proteinuria and glomerular damage over a 21-day observation period in wild-type mice.ResultsMice deficient in either αβ or γλ T cells developed minimal proteinuria and glomerular lesions and had a significant reduction in macrophage accumulation compared with wild-type mice. In γλ T-cell–deficient mice, circulating levels and glomerular deposition of autologous IgG were comparable to wild-type levels, while αβ T-cell–deficient mice had no autologous IgG production. Autologous antibody production was not required for the development of glomerulonephritis since mice that lack IgG and B cells (μ-chain-/-) developed similar proteinuria to that observed in wild-type mice.ConclusionsThese studies suggest a proinflammatory role for both αβ and γλ T cells in glomerular injury, independent of the humoral response. This is the first demonstration, to our knowledge, that both T-cell subsets contribute to the progression of a disease, and it suggests that complex regulatory interactions between αβ and γλ T cells play a role in glomerular injury

    Functional Vascular Endothelium Derived from Human Induced Pluripotent Stem Cells

    Get PDF
    Summary Vascular endothelium is a dynamic cellular interface that displays a unique phenotypic plasticity. This plasticity is critical for vascular function and when dysregulated is pathogenic in several diseases. Human genotype-phenotype studies of endothelium are limited by the unavailability of patient-specific endothelial cells. To establish a cellular platform for studying endothelial biology, we have generated vascular endothelium from human induced pluripotent stem cells (iPSCs) exhibiting the rich functional phenotypic plasticity of mature primary vascular endothelium. These endothelial cells respond to diverse proinflammatory stimuli, adopting an activated phenotype including leukocyte adhesion molecule expression, cytokine production, and support for leukocyte transmigration. They maintain dynamic barrier properties responsive to multiple vascular permeability factors. Importantly, biomechanical or pharmacological stimuli can induce pathophysiologically relevant atheroprotective or atheroprone phenotypes. Our results demonstrate that iPSC-derived endothelium possesses a repertoire of functional phenotypic plasticity and is amenable to cell-based assays probing endothelial contributions to inflammatory and cardiovascular diseases

    The multifaceted functions of neutrophils.

    No full text
    Neutrophils and neutrophil-like cells are the major pathogen-fighting immune cells in organisms ranging from slime molds to mammals. Central to their function is their ability to be recruited to sites of infection, to recognize and phagocytose microbes, and then to kill pathogens through a combination of cytotoxic mechanisms. These include the production of reactive oxygen species, the release of antimicrobial peptides, and the recently discovered expulsion of their nuclear contents to form neutrophil extracellular traps. Here we discuss these primordial neutrophil functions, which also play key roles in tissue injury, by providing details of neutrophil cytotoxic functions and congenital disorders of neutrophils. In addition, we present more recent evidence that interactions between neutrophils and adaptive immune cells establish a feed-forward mechanism that amplifies pathologic inflammation. These newly appreciated contributions of neutrophils are described in the setting of several inflammatory and autoimmune diseases

    Neutrophils: game changers in glomerulonephritis?

    No full text
    Glomerulonephritides represent a diverse array of diseases that have in common immune cell-mediated effector mechanisms that cause organ damage. The contribution of neutrophils to the pathogenesis of proliferative glomerulonephritis (GN) is not well recognized. Most equate neutrophils with killing pathogens and causing collateral tissue damage during acute inflammation. However, these phagocytes are endowed with additional characteristics that have been traditionally reserved for cells of the adaptive immune system. They communicate with other cells, exhibit plasticity in their responses and have the potential to coordinate and inform the subsequent immune response, thus countering the notion that they arrive, destroy and then disappear. Therefore, neutrophils, which are the first to arrive at a site of inflammation, are potential game changers in GN
    corecore