6 research outputs found
An annotated cDNA library of juvenile Euprymna scolopes with and without colonization by the symbiont Vibrio fischeri
BACKGROUND: Biologists are becoming increasingly aware that the interaction of animals, including humans, with their coevolved bacterial partners is essential for health. This growing awareness has been a driving force for the development of models for the study of beneficial animal-bacterial interactions. In the squid-vibrio model, symbiotic Vibrio fischeri induce dramatic developmental changes in the light organ of host Euprymna scolopes over the first hours to days of their partnership. We report here the creation of a juvenile light-organ specific EST database. RESULTS: We generated eleven cDNA libraries from the light organ of E. scolopes at developmentally significant time points with and without colonization by V. fischeri. Single pass 3' sequencing efforts generated 42,564 expressed sequence tags (ESTs) of which 35,421 passed our quality criteria and were then clustered via the UIcluster program into 13,962 nonredundant sequences. The cDNA clones representing these nonredundant sequences were sequenced from the 5' end of the vector and 58% of these resulting sequences overlapped significantly with the associated 3' sequence to generate 8,067 contigs with an average sequence length of 1,065 bp. All sequences were annotated with BLASTX (E-value < -03) and Gene Ontology (GO). CONCLUSION: Both the number of ESTs generated from each library and GO categorizations are reflective of the activity state of the light organ during these early stages of symbiosis. Future analyses of the sequences identified in these libraries promise to provide valuable information not only about pathways involved in colonization and early development of the squid light organ, but also about pathways conserved in response to bacterial colonization across the animal kingdom
The GacA global regulator of Vibrio fischeri is required for normal host tissue responses that limit subsequent bacterial colonization
Harmful and beneficial bacterium?host interactions induce similar host-tissue changes that lead to contrasting outcomes of association. A life-long association between Vibrio fischeri and the light organ of its host Euprymna scolopes begins when the squid collects bacteria from the surrounding seawater using mucus secreted from ciliated epithelial appendages. Following colonization, the bacterium causes changes in host tissue including cessation of mucus shedding, and apoptosis and regression of the appendages that may limit additional bacterial interactions. We evaluated whether delivery of morphogenic signals is influenced by GacA, a virulence regulator in pathogens, which also influences squid-colonization by V. fischeri. Low-level colonization by a GacA mutant led to regression of the ciliated appendages. However, the GacA mutant did not induce cessation of mucus shedding, nor did it trigger apoptosis in the appendages, a phenotype that normally correlates with their regression. Because apoptosis is triggered by lipopolysaccharide, we examined the GacA mutant and determined that it had an altered lipopolysaccharide profile as well as an increased sensitivity to detergents. GacA-mutant-colonized animals were highly susceptible to invasion by secondary colonizers, suggesting that the GacA mutant\u27s inability to signal the full programme of light-organ responses permitted the prolonged recruitment of additional symbionts