1,807 research outputs found

    Photometry of 40 LMC Cepheids

    Get PDF
    We present V and I_c CCD photometry for 40 LMC Cepheids at 1 to 3 epochs. This represents a significant increase in the number of LMC Cepheids with II-band data, and, as we show, is a useful addition to the sample which can be used to calibrate the period--luminosity relations in these important bands

    GRBs as Probes of the IGM

    Full text link
    Gamma-ray Bursts (GRBs) are the most powerful explosions known, capable of outshining the rest of gamma-ray sky during their short-lived prompt emission. Their cosmological nature makes them the best tool to explore the final stages in the lives of very massive stars up to the highest redshifts. Furthermore, studying the emission from their low-energy counterparts (optical and infrared) via rapid spectroscopy, we have been able to pin down the exact location of the most distant galaxies as well as placing stringent constraints on their host galaxies and intervening systems at low and high-redshift (e.g. metallicity and neutral hydrogen fraction). In fact, each GRB spectrum contains absorption features imprinted by metals in the host interstellar medium (ISM) as well as the intervening intergalactic medium (IGM) along the line of sight. In this chapter we summarize the progress made using a large dataset of GRB spectra in understanding the nature of both these absorbers and how GRBs can be used to study the early Universe, in particular to measure the neutral hydrogen fraction and the escape fraction of UV photons before and during the epoch of re-ionization.Comment: 18 pages; 5 Figures. Accepted for publication in Space Science Review

    Forecasting seasonal hydrologic response in major river basins.

    Get PDF
    Seasonal precipitation variation due to natural climate variation influences stream flow and the apparent frequency and severity of extreme hydrological conditions such as flood and drought. To study hydrologic response and understand the occurrence of extreme hydrological events, the relevant forcing variables must be identified. This study attempts to assess and quantify the historical occurrence and context of extreme hydrologic flow events and quantify the relation between relevant climate variables. Once identified, the flow data and climate variables are evaluated to identify the primary relationship indicators of hydrologic extreme event occurrence. Existing studies focus on developing basin-scale forecasting techniques based on climate anomalies in El Nino/La Nina episodes linked to global climate. Building on earlier work, the goal of this research is to quantify variations in historical river flows at seasonal temporal-scale, and regional to continental spatial-scale. The work identifies and quantifies runoff variability of major river basins and correlates flow with environmental forcing variables such as El Nino, La Nina, sunspot cycle. These variables are expected to be the primary external natural indicators of inter-annual and inter-seasonal patterns of regional precipitation and river flow. Relations between continental-scale hydrologic flows and external climate variables are evaluated through direct correlations in a seasonal context with environmental phenomenon such as sun spot numbers (SSN), Southern Oscillation Index (SOI), and Pacific Decadal Oscillation (PDO). Methods including stochastic time series analysis and artificial neural networks are developed to represent the seasonal variability evident in the historical records of river flows. River flows are categorized into low, average and high flow levels to evaluate and simulate flow variations under associated climate variable variations. Results demonstrated not any particular method is suited to represent scenarios leading to extreme flow conditions. For selected flow scenarios, the persistence model performance may be comparable to more complex multivariate approaches, and complex methods did not always improve flow estimation. Overall model performance indicates inclusion of river flows and forcing variables on average improve model extreme event forecasting skills. As a means to further refine the flow estimation, an ensemble forecast method is implemented to provide a likelihood-based indication of expected river flow magnitude and variability. Results indicate seasonal flow variations are well-captured in the ensemble range, therefore the ensemble approach can often prove efficient in estimating extreme river flow conditions. The discriminant prediction approach, a probabilistic measure to forecast streamflow, is also adopted to derive model performance. Results show the efficiency of the method in terms of representing uncertainties in the forecasts

    On the accretion origin of a vast extended stellar disk around the Andromeda galaxy

    Full text link
    We present the discovery of an inhomogenous, low-surface brightness, extended disk-like structure around the Andromeda galaxy (M31) based on a large kinematic survey of more than 2800 stars with the Keck/DEIMOS spectrograph. The stellar structure spans radii from 15 kpc out to ~40 kpc, with detections out to R ~ 70 kpc. The constituent stars lag the expected velocity of circular orbits in the plane of the M31 disk by ~40 kms and have a velocity dispersion of ~30 kms. The color range on the upper RGB shows a large spread indicative of a population with a significant range of metallicity. The mean metallicity of the population, measured from Ca II equivalent widths, is [Fe/H] = -0.9 +/- 0.2. The morphology of the structure is irregular at large radii, and shows a wealth of substructures which must be transitory in nature, and are almost certainly tidal debris. The presence of these substructures indicates that the global entity was formed by accretion. This extended disk follows smoothly on from the central parts of M31 disk with an exponential density law of scale-length of 5.1 +/- 0.1 kpc, similar to that of the bright inner disk. The population possesses similar kinematic and abundance properties over the entire region where it is detected in the survey. We estimate that the structure accounts for approximately 10% of the total luminosity of the M31 disk, and given the huge scale, contains ~30% of the total disk angular momentum. This finding indicates that at least some galactic stellar disks are vastly larger than previously thought and are formed, at least in their outer regions, primarily by accretion. [abridged]Comment: 20 pages, 30 figures, ApJ submitte
    • …
    corecore