6 research outputs found

    A novel Ancestral Beijing sublineage of Mycobacterium tuberculosis suggests the transition site to Modern Beijing sublineages.

    Get PDF
    Global Mycobacterium tuberculosis population comprises 7 major lineages. The Beijing strains, particularly the ones classified as Modern groups, have been found worldwide, frequently associated with drug resistance, younger ages, outbreaks and appear to be expanding. Here, we report analysis of whole genome sequences of 1170 M. tuberculosis isolates together with their patient profiles. Our samples belonged to Lineage 1-4 (L1-L4) with those of L1 and L2 being equally dominant. Phylogenetic analysis revealed several new or rare sublineages. Differential associations between sublineages of M. tuberculosis and patient profiles, including ages, ethnicity, HIV (human immunodeficiency virus) infection and drug resistance were demonstrated. The Ancestral Beijing strains and some sublineages of L4 were associated with ethnic minorities while L1 was more common in Thais. L2.2.1.Ancestral 4 surprisingly had a mutation that is typical of the Modern Beijing sublineages and was common in Akha and Lahu tribes who have migrated from Southern China in the last century. This may indicate that the evolutionary transition from the Ancestral to Modern Beijing sublineages might be gradual and occur in Southern China, where the presence of multiple ethnic groups might have allowed for the circulations of various co-evolving sublineages which ultimately lead to the emergence of the Modern Beijing strains

    Biomarkers for Refractory Lupus Nephritis: A Microarray Study of Kidney Tissue

    No full text
    The prognosis of severe lupus nephritis (LN) is very different among individual patients. None of the current biomarkers can be used to predict the development of refractory LN. Because kidney histology is the gold standard for diagnosing LN, the authors hypothesize that molecular signatures detected in kidney biopsy tissue may have predictive value in determining the therapeutic response. Sixty-seven patients with biopsy-proven severely active LN by International Society of Nephrology/Renal Pathology Society (ISN/RPS) classification III/IV were recruited. Twenty-three kidney tissue samples were used for RNA microarray analysis, while the remaining 44 samples were used for validation by real-time polymerase chain reaction (PCR) gene expression analysis. From hundreds of differential gene expressions in refractory LN, 12 candidates were selected for validation based on gene expression levels as well as relevant functions. The candidate biomarkers were members of the innate immune response molecules, adhesion molecules, calcium-binding receptors, and paracellular tight junction proteins. S100A8, ANXA13, CLDN19 and FAM46B were identified as the best kidney biomarkers for refractory LN, and COL8A1 was identified as the best marker for early loss of kidney function. These new molecular markers can be used to predict refractory LN and may eventually lead to novel molecular targets for therapy
    corecore