58 research outputs found

    DNA methylation in interleukin-11 predicts clinical response to antidepressants in GENDEP

    Get PDF
    Transcriptional differences in interleukin-11 (IL11) after antidepressant treatment have been found to correspond to clinical response in major depressive disorder (MDD) patients. Expression differences were partly mediated by a single-nucleotide polymorphism (rs1126757), identified as a predictor of antidepressant response as part of a genome-wide association study. Here we attempt to identify whether DNA methylation, another baseline factor known to affect transcription factor binding, might also predict antidepressant response, using samples collected from the Genome-based Therapeutic Drugs for Depression project (GENDEP). DNA samples from 113 MDD individuals from the GENDEP project, who were treated with either escitalopram (n=80) or nortriptyline (n=33) for 12 weeks, were randomly selected. Percentage change in Montgomery-� sberg Depression Rating Scale scores between baseline and week 12 were utilized as our measure of antidepressant response. The Sequenom EpiTYPER platform was used to assess DNA methylation across the only CpG island located in the IL11 gene. Regression analyses were then used to explore the relationship between CpG unit methylation and antidepressant response. We identified a CpG unit predictor of general antidepressant response, a drug by CpG unit interaction predictor of response, and a CpG unit by rs1126757 interaction predictor of antidepressant response. The current study is the first to investigate the potential utility of pharmaco-epigenetic biomarkers for the prediction of antidepressant response. Our results suggest that DNA methylation in IL11 might be useful in identifying those patients likely to respond to antidepressants, and if so, the best drug suited to each individual

    Sepsis Enhances Epithelial Permeability with Stretch in an Actin Dependent Manner

    Get PDF
    Ventilation of septic patients often leads to the development of edema and impaired gas exchange. We hypothesized that septic alveolar epithelial monolayers would experience stretch-induced barrier dysfunction at a lower magnitude of stretch than healthy alveolar epithelial monolayers. Alveolar epithelial cells were isolated from rats 24 hours after cecal ligation and double puncture (2CLP) or sham surgery. Following a 5-day culture period, monolayers were cyclically stretched for 0, 10, or 60 minutes to a magnitude of 12% or 25% change in surface area (ΔSA). Barrier function, MAPk and myosin light chain (MLC) phosphorylation, tight junction (TJ) protein expression and actin cytoskeletal organization were examined after stretch. Significant increases in epithelial permeability were observed only in 2CLP monolayers at the 12% ΔSA stretch level, and in both 2CLP and sham monolayers at the 25% ΔSA stretch level. Increased permeability in 2CLP monolayers was not associated with MAPk signaling or alterations in expression of TJ proteins. 2CLP monolayers had fewer actin stress fibers before stretch, a more robust stretch-induced actin redistribution, and reduced phosphorylated MLCK than sham monolayers. Jasplakinolide stabilization of the actin cytoskeleton in 2CLP monolayers prevented significant increases in permeability following 60 minutes of stretch to 12% ΔSA. We concluded that septic alveolar epithelial monolayers are more susceptible to stretch-induced barrier dysfunction than healthy monolayers due to actin reorganization

    Enhancement strategies for transdermal drug delivery systems: current trends and applications

    Get PDF

    Putative Transcriptomic Biomarkers in the Inflammatory Cytokine Pathway Differentiate Major Depressive Disorder Patients from Control Subjects and Bipolar Disorder Patients

    Get PDF
    Mood disorders consist of two etiologically related, but distinctly treated illnesses, major depressive disorder (MDD) and bipolar disorder (BPD). These disorders share similarities in their clinical presentation, and thus show high rates of misdiagnosis. Recent research has revealed significant transcriptional differences within the inflammatory cytokine pathway between MDD patients and controls, and between BPD patients and controls, suggesting this pathway may possess important biomarker properties. This exploratory study attempts to identify disorder-specific transcriptional biomarkers within the inflammatory cytokine pathway, which can distinguish between control subjects, MDD patients and BPD patients. This is achieved using RNA extracted from subject blood and applying synthesized complementary DNA to quantitative PCR arrays containing primers for 87 inflammation-related genes. Initially, we use ANOVA to test for transcriptional differences in a ‘discovery cohort’ (total n = 90) and then we use t-tests to assess the reliability of any identified transcriptional differences in a ‘validation cohort’ (total n = 35). The two most robust and reliable biomarkers identified across both the discovery and validation cohort were Chemokine (C-C motif) ligand 24 (CCL24) which was consistently transcribed higher amongst MDD patients relative to controls and BPD patients, and C-C chemokine receptor type 6 (CCR6) which was consistently more lowly transcribed amongst MDD patients relative to controls. Results detailed here provide preliminary evidence that transcriptional measures within inflammation-related genes might be useful in aiding clinical diagnostic decision-making processes. Future research should aim to replicate findings detailed in this exploratory study in a larger medication-free sample and examine whether identified biomarkers could be used prospectively to aid clinical diagnosis
    • …
    corecore