50 research outputs found
Measurement of refractive index by nanoparticle tracking analysis reveals heterogeneity in extracellular vesicles
Introduction: Optical techniques are routinely used to size and count extracellular vesicles (EV). For comparison of data from different methods and laboratories, suitable calibrators are essential. A suitable calibrator must have a refractive index (RI) as close to that of EV as possible but the RI of EV is currently unknown. To measure EV, RI requires accurate knowledge of size and light scattering. These are difficult to measure as most EVs cannot be resolved by light microscopy and their diameter is smaller than the wavelength of visible light. However, nanoparticle tracking analysis (NTA) provides both size and relative light scattering intensity (rLSI) values. We therefore sought to determine whether it was possible to use NTA to measure the RI of individual EVs. Methods: NTA was used to measure the rLSI and size of polystyrene and silica microspheres of known size and RI (1.470 and 1.633, respectively) and of EV isolated from a wide range of cells. We developed software, based on Mie scattering code, to calculate particle RI from the rLSI data. This modelled theoretical scattering intensities for polystyrene and silica microspheres of known size (100 and 200 nm) and RI. The model was verified using data from the polystyrene and silica microspheres. Size and rLSI data for each vesicle were processed by the software to generate RI values. Results: The following modal RI measurements were obtained: fresh urinary EV 1.374, lyophilised urinary EV 1.367, neuroblastoma EV 1.393, blood EV 1.398, EV from activated platelets 1.390, small placental EV 1.364β1.375 and 1.398β1.414 for large placental EV (>200 nm). Large placental EV had a significantly higher RI than small placental EV (p<0.0001). The spread of RI values was narrower for small EV than for the more heterogeneous large EV. Discussion: Using NTA and Mie scattering theory, we have demonstrated that it is possible to estimate the RI of sub-micron EV using NTA data. EV typically had a modal RI of 1.37β1.39, whereas values of >1.40 were observed for some large (>200 nm) microvesicles. Conclusion: This method for measuring EV RI will be useful for developing appropriate calibrators for EV measurement
Recommended from our members
Placental extracellular vesicles express active dipeptidyl peptidase IV; levels are increased in gestational diabetes mellitus
Gestational diabetes mellitus (GDM) is the most common metabolic disorder in pregnancy and is characterized by insulin resistance and decreased circulating glucagon-like peptide-1 (GLP-1). GDM resolves rapidly after delivery implicating the placenta in the disease. This study examines the biological functions that cause this pathology. The placenta releases syncytiotrophoblast-derived extracellular vesicles (STB-EVs) into the maternal circulation, which is enhanced in GDM. Dipeptidyl peptidase IV (DPPIV) is known to play a role in type 2 diabetes by breaking down GLP-1, which in turn regulates glucose-dependent insulin secretion. STB-EVs from control and GDM women were analysed. We show that normal human placenta releases DPPIV-positive STB-EVs and that they are higher in uterine than paired peripheral blood, confirming placental origin. DPPIV-bound STB-EVs from normal perfused placentae are dose dependently inhibited with vildagliptin. DPPIV-bound STB-EVs from perfused placentae are able to breakdown GLP-1 . STB-EVs from GDM perfused placentae show greater DPPIV activity. Importantly, DPPIV-bound STB-EVs increase eightfold in the circulation of women with GDM. This is the first report of STB-EVs carrying a biologically active molecule that has the potential to regulate maternal insulin secretion
Recommended from our members
Mode of induction of platelet-derived extracellular vesicles is a critical determinant of their phenotype and function
Platelet-derived extracellular vesicles (PDEVs) are the most abundant amongst all types of EVs in the circulation. However, the mechanisms leading to PDEVs release, their role in coagulation and phenotypic composition are poorly understood.
PDEVs from washed platelets were generated using different stimuli and were characterised using nanoparticle tracking analysis. Procoagulant properties were evaluated by fluorescence flow cytometry and calibrated automated thrombography. EVs from plasma were isolated and concentrated using a novel protocol involving a combination of size exclusion chromatography and differential centrifugation, which produces pure and concentrated EVs.
Agonist stimulation enhanced PDEV release, but did not alter the average size of EVs compared to those produced by unstimulated platelets. Agonist stimulation led to lower negatively-charged phospholipid externalization in PDEVs, which was reflected in the lower procoagulant activity compared to those generated without agonist stimulation. Circulating EVs did not have externalized negatively-charged phospholipids. None of the 4 types of EVs presented tissue factor.
The mechanism by which PDEV formation is induced is a critical determinant of its phenotype and function. Importantly, we have developed methods to obtain clean, concentrated and functional EVs derived from platelet-free plasma and washed platelets, which can be used to provide novel insight into their biological functions
Recommended from our members
Syncytiotrophoblast extracellular vesicles from pre-eclampsia placentas differentially affect platelet function
Pre-eclampsia (PE) complicates around 3% of all pregnancies and is one of the most common causes of maternal mortality worldwide. The pathophysiology of PE remains unclear however its underlying cause originates from the placenta and manifests as raised blood pressure, proteinuria, vascular or systemic inflammation and hypercoagulation in the mother. Women who develop PE are also at significantly higher risk of subsequently developing cardiovascular (CV) disease. In PE, the failing endoplasmic reticulum, oxidative and inflammatory stressed syncytiotrophoblast layer of the placenta sheds increased numbers of syncytiotrophoblast extracellular vesicles (STBEV) into the maternal circulation. Platelet reactivity, size and concentration are also known to be altered in some women who develop PE, although the underlying reasons for this have not been determined. In this study we show that STBEV from disease free placenta isolated ex vivo by dual placental perfusion associate rapidly with platelets. We provide evidence that STBEV isolated from normal placentas cause platelet activation and that this is increased with STBEV from PE pregnancies. Furthermore, treatment of platelets with aspirin, currently prescribed for women at high risk of PE to reduce platelet aggregation, also inhibits STBEV-induced reversible aggregation of washed platelets. Increased platelet reactivity as a result of exposure to PE placenta derived STBEVs correlates with increased thrombotic risk associated with PE. These observations establish a possible direct link between the clotting disturbances of PE and dysfunction of the placenta, as well as the known increased risk of thromboembolism associated with this condition
Recommended from our members
Farnesoid X receptor and liver X receptor ligands initiate formation of coated platelets
The liver X receptors (LXRs) and farnesoid X receptor (FXR) have been identified in human platelets. Ligands of these receptors have been shown to have nongenomic inhibitory effects on platelet activation by platelet agonists. This, however, seems contradictory with the platelet hyper-reactivity that is associated with several pathological conditions that are associated with increased circulating levels of molecules that are LXR and FXR ligands, such as hyperlipidemia, type 2 diabetes mellitus, and obesity. We, therefore, investigated whether ligands for the LXR and FXR receptors were capable of priming platelets to the activated state without stimulation by platelet agonists. Treatment of platelets with ligands for LXR and FXR converted platelets to the procoagulant state, with increases in phosphatidylserine exposure, platelet swelling, reduced membrane integrity, depolarization of the mitochondrial membrane, and microparticle release observed. Additionally, platelets also displayed features associated with coated platelets such as P-selectin exposure, fibrinogen binding, fibrin generation that is supported by increased serine protease activity, and inhibition of integrin Ξ±IIbΞ²3. LXR and FXR ligand-induced formation of coated platelets was found to be dependent on both reactive oxygen species and intracellular calcium mobilization, and for FXR ligands, this process was found to be dependent on cyclophilin D. We conclude that treatment with LXR and FXR ligands initiates coated platelet formation, which is thought to support coagulation but results in desensitization to platelet stimuli through inhibition of Ξ±IIbΞ²3 consistent with their ability to inhibit platelet function and stable thrombus formation in vivo
ST2 and IL-33 in Pregnancy and Pre-Eclampsia
Normal pregnancy is associated with a mild systemic inflammatory response and an immune bias towards type 2 cytokine production, whereas pre-eclampsia is characterized by a more intense inflammatory response, associated with endothelial dysfunction and a type 1 cytokine dominance. Interleukin (IL)-33 is a newly described member of the IL-1 family, which binds its receptor ST2L to induce type 2 cytokines. A soluble variant of ST2 (sST2) acts as a decoy receptor to regulate the activity of IL-33. In this study circulating IL-33 and sST2 were measured in each trimester of normal pregnancy and in women with pre-eclampsia. While IL-33 did not change throughout normal pregnancy, or between non-pregnant, normal pregnant or pre-eclamptic women, sST2 was significantly altered. sST2 was increased in the third trimester of normal pregnancy (p<0.001) and was further increased in pre-eclampsia (p<0.001). This increase was seen prior to the onset of disease (p<0.01). Pre-eclampsia is a disease caused by placental derived factors, and we show that IL-33 and ST2 can be detected in lysates from both normal and pre-eclampsia placentas. ST2, but not IL-33, was identified on the syncytiotrophoblast layer, whereas IL-33 was expressed on perivascular tissue. In an in vitro placental perfusion model, sST2 was secreted by the placenta into the βmaternalβ eluate, and placental explants treated with pro-inflammatory cytokines or subjected to hypoxia/reperfusion injury release more sST2, suggesting the origin of at least some of the increased amounts of circulating sST2 in pre-eclamptic women is the placenta. These results suggest that sST2 may play a significant role in pregnancies complicated by pre-eclampsia and increased sST2 could contribute to the type 1 bias seen in this disorder
Syncytiotrophoblast Microvesicles Released from Pre-Eclampsia Placentae Exhibit Increased Tissue Factor Activity
Background: Pre-eclampsia is a complication of pregnancy associated with activation of coagulation. It is caused by the placenta, which sheds increased amounts of syncytiotrophoblast microvesicles (STBM) into the maternal circulation. We hypothesized that STBM could contribute to the haemostatic activation observed in pre-eclampsia. Methodology/Principal Findings: STBM were collected by perfusion of the maternal side of placentae from healthy pregnant women and women with pre-eclampsia at caesarean section. Calibrated automated thrombography was used to assess thrombin generation triggered by STBM-borne tissue factor in platelet poor plasma (PPP). No thrombin was detected in PPP alone but the addition of STBM initiated thrombin generation in 14/16 cases. Pre-eclampsia STBM significantly shortened the lag time (LagT, P = 0.01) and time to peak thrombin generation (TTP, P = 0.005) when compared to normal STBM. Blockade of tissue factor eliminated thrombin generation, while inhibition of tissue factor pathway inhibitor significantly shortened LagT (p = 0.01) and TTP (P,0.0001), with a concomitant increase in endogenous thrombin potential. Conclusions/Significance: STBM triggered thrombin generation in normal plasma in a tissue factor dependent manner, indicating that TF activity is expressed by STBM. This is more pronounced in STBM shed from pre-eclampsia placentae. As more STBM are shed in pre-eclampsia these observations give insight into the disordered haemostasis observed in thi
Placental syncytiotrophoblast extracellular vesicles enter primary endothelial cells through clathrin-mediated endocytosis
Introduction: The aim was to investigate syncytiotrophoblast extracellular vesicle (STBEV) uptake mechanisms by primary endothelial cells, the effects on gene expression, cell activation as well as the effect of aspirin. Methods: The STBEVs were derived using the placental perfusion system, from normal or preeclamptic placentas. Endothelial uptake was analysed with flow cytometry. To elucidate uptake, different inhibitors were tested; Cytochalasin D, Chlorpromazine hydrochloride, Methyl-B-cyclodextrin, Dynasore and Wortmannin. Endothelial gene expression was evaluated using an endothelial cell biology qPCR array. Cell activation was studied by ICAM-1 surface expression after STBEV exposure, with and without aspirin treatment. Results: Normal and preeclamptic STBEV uptake was blocked in similar ways. Chlorpromazine, Dynasore and Wortmannin almost completely blocked STBEV uptake. Methyl-B-cyclodextrin blocked 45β60% of the uptake while Cytochalasin D did not block uptake at all. Neither normal nor preeclamptic STBEVs had any significant effects on endothelial gene expression. Normal STBEVs down-regulated cell surface protein ICAM-1 expression, with and without aspirin treatment. Aspirin had no effect on STBEV uptake or cellular gene expression on its own, however it down regulated ICAM-1 protein expression in combination with preeclamptic STBEV exposure. Discussion: STBEV uptake primarily occurred through clathrin-mediated endocytosis. The STBEVs had no significant effect on gene expression but did have effects on ICAM-1 surface expression. The prophylactic mechanisms of aspirin may be by preventing the endothelium from being activated by the preeclamptic STBEVs