4 research outputs found
Plant responses to fertilization experiments in lowland, species-rich, tropical forests.
We present a meta-analysis of plant responses to fertilization experiments conducted in lowland, species-rich, tropical forests. We also update a key result and present the first species-level analyses of tree growth rates for a 15-yr factorial nitrogen (N), phosphorus (P), and potassium (K) experiment conducted in central Panama. The update concerns community-level tree growth rates, which responded significantly to the addition of N and K together after 10Â yr of fertilization but not after 15Â yr. Our experimental soils are infertile for the region, and species whose regional distributions are strongly associated with low soil P availability dominate the local tree flora. Under these circumstances, we expect muted responses to fertilization, and we predicted species associated with low-P soils would respond most slowly. The data did not support this prediction, species-level tree growth responses to P addition were unrelated to species-level soil P associations. The meta-analysis demonstrated that nutrient limitation is widespread in lowland tropical forests and evaluated two directional hypotheses concerning plant responses to N addition and to P addition. The meta-analysis supported the hypothesis that tree (or biomass) growth rate responses to fertilization are weaker in old growth forests and stronger in secondary forests, where rapid biomass accumulation provides a nutrient sink. The meta-analysis found no support for the long-standing hypothesis that plant responses are stronger for P addition and weaker for N addition. We do not advocate discarding the latter hypothesis. There are only 14 fertilization experiments from lowland, species-rich, tropical forests, 13 of the 14 experiments added nutrients for five or fewer years, and responses vary widely among experiments. Potential fertilization responses should be muted when the species present are well adapted to nutrient-poor soils, as is the case in our experiment, and when pest pressure increases with fertilization, as it does in our experiment. The statistical power and especially the duration of fertilization experiments conducted in old growth, tropical forests might be insufficient to detect the slow, modest growth responses that are to be expected
Recommended from our members
Hurricane disturbance accelerated the thermophilization of a Jamaican montane forest
Thermophilization â changes in community composition towards greater relative abundances of species associated with warmer environments â has been described for plants and animals in many locations around the world. Disturbances of various kinds have increased rates of thermophilization in temperate sites, and this has been proposed, but not demonstrated, for some tropical environments. In this study, we tested whether disturbance by a category 4 hurricane in 1988 (Hurricane Gilbert) increased thermophilization in a Jamaican montane forest by using preâ and postâhurricane data collected over four decades (1974â2014). We analysed tree species composition in permanent plots at ca 1580 m above sea level in Jamaica's Blue Mountains. There were 66 tree species with stem diameters â„ 3 cm at breast height. We used published data on the altitudinal distribution of 62 species (94% of genetic individuals (genets)) to calculate the mean community altitude scores (MCAS) of the trees recorded in each census, as well as the MCAS of the survivors, recruits and dead trees after each decade. We found that thermophilization did occur (i.e. MCAS decreased significantly over time), and that this was due both to a decreasing MCAS of recruits through the four decades (significantly lower than expected in the last three decades) as well as a high MCAS of trees that died. Thermophilization was fastest in the postâhurricane decade, during which time there was marked and significant increase in the MCAS of dead trees; this change was above and beyond expectations of longâterm successional dynamics. The rate of compositional change equates to an overall decrease in MCAS of 1.6 m yrâ1 over the fortyâyear study period. We conclude that this Jamaican montane forest is undergoing thermophilization (likely due to rising temperature) and that the hurricaneâcaused disturbance accelerated thermophilization through differential mortality.</jats:p
Recommended from our members
Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest.
We maintained a factorial nitrogen (N), phosphorus (P), and potassium (K) addition experiment for 11 years in a humid lowland forest growing on a relatively fertile soil in Panama to evaluate potential nutrient limitation of tree growth rates, fine-litter production, and fine-root biomass. We replicated the eight factorial treatments four times using 32 plots of 40 x 40 m each. The addition of K was associated with significant decreases in stand-level fine-root biomass and, in a companion study of seedlings, decreases in allocation to roots and increases in height growth rates. The addition of K and N together was associated with significant increases in growth rates of saplings and poles (1-10 cm in diameter at breast height) and a further marginally significant decrease in stand-level fine-root biomass. The addition of P was associated with a marginally significant (P = 0.058) increase in fine-litter production that was consistent across all litter fractions. Our experiment provides evidence that N, P, and K all limit forest plants growing on a relatively fertile soil in the lowland tropics, with the strongest evidence for limitation by K among seedlings, saplings, and poles