103 research outputs found

    Acceptance and Usage of Electronic Health Record Systems in Small Medical Practices

    Get PDF
    One of the objectives of the U.S. government has been the development of a nationwide health information infrastructure, including adoption and use of an electronic health records (EHR) system. However, a 2008 survey conducted by the National Center for Health Statistics indicated a 41.5% usage of the EHR system by physicians in office-based practices. The purpose of this study was to explore opinions and beliefs on the barriers to the diffusion of an ERH system using Q-methodology. Specifically, the research questions examined the subjectivity in the patterns of perspectives at the preadoption stage of the nonusers and at the postadoption stage of the users of an EHR system to facilitate effective diffusion. Data were collected by self-referred rank ordering of opinions on such barriers and facilitators. The results suggested that the postadoption barriers of time, change in work processes, and organizational factors were critical. Although the time barrier was common, barriers of organizational culture and change in work processes differed among typologies of perspectives at the postadoption stage. Preadoption barriers of finance, organizational culture, time, technology, and autonomy were critical. The typologies of perspectives diverged on critical barriers at the preadoptive stage. A customized solution of an in-house system and training is recommended for perspectives dealing with technical and organizational concerns and a web-based system for perspectives concerned with barriers of finance, technology, and organization. The social impact of tailoring solutions to personal viewpoints would result in the increased sharing of quality medical information for meaningful decision making

    Stimulus-dependent effects on tactile spatial acuity

    Get PDF
    BACKGROUND: Previous studies have shown that spatio-tactile acuity is influenced by the clarity of the cortical response in primary somatosensory cortex (SI). Stimulus characteristics such as frequency, amplitude, and location of tactile stimuli presented to the skin have been shown to have a significant effect on the response in SI. The present study observes the effect of changing stimulus parameters of 25 Hz sinusoidal vertical skin displacement stimulation ("flutter") on a human subject's ability to discriminate between two adjacent or near-adjacent skin sites. Based on results obtained from recent neurophysiological studies of the SI response to different conditions of vibrotactile stimulation, we predicted that the addition of 200 Hz vibration to the same site that a two-point flutter stimulus was delivered on the skin would improve a subject's spatio-tactile acuity over that measured with flutter alone. Additionally, similar neurophysiological studies predict that the presence of either a 25 Hz flutter or 200 Hz vibration stimulus on the unattended hand (on the opposite side of the body from the site of two-point limen testing – the condition of bilateral stimulation – which has been shown to evoke less SI cortical activity than the contralateral-only stimulus condition) would decrease a subject's ability to discriminate between two points on the skin. RESULTS: A Bekesy tracking method was employed to track a subject's ability to discriminate between two-point stimuli delivered to the skin. The distance between the two points of stimulation was varied on a trial-by-trial basis, and several different stimulus conditions were examined: (1) The "control" condition, in which 25 Hz flutter stimuli were delivered simultaneously to the two points on the skin of the attended hand, (2) the "complex" condition, in which a combination of 25 Hz flutter and 200 Hz vibration stimuli were delivered to the two points on the attended hand, and (3) a "bilateral" condition, in which 25 Hz flutter was delivered to the two points on the attended hand and a second stimulus (either flutter or vibration) was delivered to the unattended hand. The two-point limen was reduced (i.e., spatial acuity was improved) under the complex stimulus condition when compared to the control stimulus condition. Specifically, whereas adding vibration to the unilateral two-point flutter stimulus improved spatial acuity by 20 to 25%, the two-point limen was not significantly affected by substantial changes in stimulus amplitude (between 100 – 200 ΞΌm). In contrast, simultaneous stimulation of the unattended hand (contralateral to the attended site), impaired spatial acuity by 20% with flutter stimulation and by 30% with vibration stimulation. CONCLUSION: It was found that the addition of 200 Hz vibration to a two-point 25 Hz flutter stimulus significantly improved a subject's ability to discriminate between two points on the skin. Since previous studies showed that 200 Hz vibration preferentially evokes activity in cortical area SII and reduces or inhibits the spatial extent of activity in SI in the same hemisphere, the findings in this paper raise the possibility that although SI activity plays a major role in two-point discrimination on the skin, influences relayed to SI from SII in the same hemisphere may contribute importantly to SI's ability to differentially respond to stimuli applied to closely spaced skin points on the same side of the body midline

    Limited predictive value of blastomere angle of division in trophectoderm and inner cell mass specification.

    Get PDF
    The formation of trophectoderm (TE) and pluripotent inner cell mass (ICM) is one of the earliest events during mammalian embryogenesis. It is believed that the orientation of division of polarised blastomeres in the 8- and 16-cell stage embryo determines the fate of daughter cells, based on how asymmetrically distributed lineage determinants are segregated. To investigate the relationship between angle of division and subsequent fate in unperturbed embryos, we constructed cellular resolution digital representations of the development of mouse embryos from the morula to early blastocyst stage, based on 4D confocal image volumes. We find that at the 16-cell stage, very few inside cells are initially produced as a result of cell division, but that the number increases due to cell movement. Contrary to expectations, outside cells at the 16-cell stage represent a heterogeneous population, with some fated to contributing exclusively to the TE and others capable of contributing to both the TE and ICM. Our data support the view that factors other than the angle of division, such as the position of a blastomere, play a major role in the specification of TE and ICM.This work was supported through a Wellcome Trust fellowship award [074246/Z04/Z] and Biotechnology and Biological Sciences Research Council grants [BB/F011512/1 and BB/E004946/1] to S.S.This is the final published version. It first appeared at dev.biologists.org/content/141/11/2279.long

    Novel sensory testing methods for the quantitative assessment of cortical-cortical interactions

    Get PDF
    Traditional tactile sensory testing has relied heavily on delivery of single-site stimuli to the skin and querying test subjects on various qualities of those stimuli. While these methods are effective in making measures that characterize the peripheral nervous system, they lack in quantitatively assessing centrally mediated disorders of the nervous system. Additionally, the models from which the developments of such peripherally-based protocols originate are based more on historical precedence of prior techniques than on a characterization of the central nervous system. This thesis describes the development of not only novel methods for delivering multi-site tactile stimuli, but a novel approach for sensory testing based on models derived from measures of neural population response yielded from in-vivo and in-vitro animal experimentation. During the course of this study, two separate stimulators were designed and fabricated. The first, referred to as the "Two-Point Stimulator" (TPS), was a prototype developed to improve upon previously existing methods for delivering vibrotaction during psychophysical and physiological experimentation. To test the device, tracking protocols were used to assess the ability of human subjects to discriminate and localize between two near-adjacent skin sites under stimulus conditions of varying amplitude, frequency, location, and duration. Data collected were consistent with previously published reports, suggesting that one possible use of the device would be to provide a means for improved measures of spatio-tactile acuity. These studies were repeated on subjects with autism resulting in significant differences in performance from that of the normal population. Correlating data obtained from these psychophysical experiments with cortical measures, acquired primarily with optical imaging and neural recording techniques in animal experimentation, has allowed us to develop a better understanding of the cortical dynamics involved in somatosensory processing. A second stimulator fabricated during this period, the CM-1 (Cortical Metrics - Model #1), improves considerably upon the TPS, most notably in portability, cost, and functional capability. Current ongoing experimentation using this novel device allows an improved means for measuring tactile sensibility and assessing differences in cortical information-processing strategies between normal healthy control populations and populations with various neurological disorders, in both research and clinical settings

    On Fast-Converged Deep Reinforcement Learning for Optimal Dispatch of Large-Scale Power Systems under Transient Security Constraints

    Full text link
    Power system optimal dispatch with transient security constraints is commonly represented as Transient Security-Constrained Optimal Power Flow (TSC-OPF). Deep Reinforcement Learning (DRL)-based TSC-OPF trains efficient decision-making agents that are adaptable to various scenarios and provide solution results quickly. However, due to the high dimensionality of the state space and action spaces, as well as the non-smoothness of dynamic constraints, existing DRL-based TSC-OPF solution methods face a significant challenge of the sparse reward problem. To address this issue, a fast-converged DRL method for TSC-OPF is proposed in this paper. The Markov Decision Process (MDP) modeling of TSC-OPF is improved by reducing the observation space and smoothing the reward design, thus facilitating agent training. An improved Deep Deterministic Policy Gradient algorithm with Curriculum learning, Parallel exploration, and Ensemble decision-making (DDPG-CPEn) is introduced to drastically enhance the efficiency of agent training and the accuracy of decision-making. The effectiveness, efficiency, and accuracy of the proposed method are demonstrated through experiments in the IEEE 39-bus system and a practical 710-bus regional power grid. The source code of the proposed method is made public on GitHub.Comment: 10 pages, 11 figure

    Absence of stimulus-driven synchronization effects on sensory perception in autism: Evidence for local underconnectivity?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A number of neurophysiological characteristics demonstrated in autism share the common theme of under-connectivity in the cerebral cortex. One of the prominent theories of the cause of the dysfunctional connectivity in autism is based on distinct anatomical structures that differ between the autistic and the neurotypical cortex. The functional minicolumn has been identified as occupying a much smaller space in the cortex of people with autism as compared to neurotypical controls, and this aberration in architecture has been proposed to lead to under-connectivity at the local or within-macrocolumn level, which in turn leads to dysfunctional connectivity globally across cortical areas in persons with autism. Numerous reports have indicated reduced synchronization of activity on a large scale in the brains of people with autism. We hypothesized that if the larger-scale aberrant dynamics in autism were due – at least in part – to a widespread propagation of the errors introduced at the level of local connectivity between minicolumns, then aberrations in local functional connectivity should also be detectable in autism.</p> <p>Methods</p> <p>Recently, we reported a method for measuring the perceptual changes that are impacted by the presence of synchronized conditioning stimuli on the skin. In this study, the temporal order judgment (TOJ) and temporal discriminative threshold (TDT) of 10 adult autism subjects were assessed both in the absence and presence of synchronized conditioning vibrotactile stimuli.</p> <p>Results</p> <p>Our previous report demonstrated that delivering simultaneous and synchronized vibrotactile stimuli to near-adjacent skin sites decreases a subject's ability to determine temporal order by 3 to 4-fold. However, results presented in this report show that subjects with autism do not demonstrate such decreased capacity in temporal order judgment (TOJ) in the presence of synchronized conditioning stimuli, although these same subjects do have TOJ thresholds well above that of controls.</p> <p>Conclusion</p> <p>It is speculated that the differences in sensory perceptual capacities in the presence of synchronized conditioning stimuli in autism are due to local under-connectivity in cortex at the minicolumnar organizational level, and that the above-average TOJ thresholds in autism could be attributed to structural differences that have been observed in the frontostrial system of this population.</p

    Effects of the N-methyl-D-Aspartate receptor antagonist dextromethorphan on vibrotactile adaptation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous reports have demonstrated that short durations of vibrotactile stimuli (less than or equal to 2 sec) effectively and consistently modify both the perceptual response in humans as well as the neurophysiological response in somatosensory cortex. The change in cortical response with adaptation has been well established by a number of studies, and other reports have extended those findings in determining that both GABA- and NMDAR-mediated neurotransmission play a significant role in the dynamic response of somatosensory cortical neurons. In this study, we evaluated the impact that dextromethorphan (DXM), an NMDAR antagonist, had on two distinct vibrotactile adaptation tasks.</p> <p>Results</p> <p>All subjects, both those that ingested 60 mg DXM and those that ingested placebo, were evaluated for their amplitude discriminative capacity between two simultaneously delivered vibrotactile stimuli both with and without 3 conditions of pre-exposure to adapting stimulation. The results demonstrated that the perceptual metrics of subjects who ingested 60 mg DXM were significantly altered from that of controls when the amplitude discrimination task followed one of the conditions of adapting stimulation. Without the condition of pre-exposure to an adapting stimulus (or stimuli), there was little difference between the observations obtained from the subjects that ingested DXM and controls. Peak impact on subject response occurred at 60 min post-ingestion, whereas the scores of controls who ingested placebo were not impacted.</p> <p>Conclusion</p> <p>The results – that DXM blocks vibrotactile adaptation – is consistent with the suggestion that NMDAR-mediated neurotransmission plays a significant role in the perceptual adaptive response. This finding is also consistent with neurophysiological findings that report observations of the effects of NMDAR block on the SI cortical response to repetitive vibrotactile stimulation.</p

    Effects of stimulus-driven synchronization on sensory perception

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A subject's ability to differentiate the loci of two points on the skin depends on the stimulus-evoked pericolumnar lateral inhibitory interactions which increase the spatial contrast between regions of SI cortex that are activated by stimulus-evoked afferent drive. Nevertheless, there is very little known about the impact that neuronal interactions – such as those evoked by mechanical skin stimuli that project to and coordinate synchronized activity in adjacent and/or near-adjacent cortical columns – could have on sensory information processing.</p> <p>Methods</p> <p>The temporal order judgment (TOJ) and temporal discriminative threshold (TDT) of 20 healthy adult subjects were assessed both in the absence and presence of concurrent conditions of tactile stimulation. These measures were obtained across a number of paired sites – two unilateral and one bilateral – and several conditions of adapting stimuli were delivered both prior to and concurrently with the TOJ and TDT tasks. The pairs of conditioning stimuli were synchronized and periodic, synchronized and non-periodic, or asynchronous and non-periodic.</p> <p>Results</p> <p>In the absence of any additional stimuli, TOJ and TDT results obtained from the study were comparable across a number of pairs of stimulus sites – unilateral as well as bilateral. In the presence of a 25 Hz conditioning sinusoidal stimulus which was delivered both before, concurrently and after the TOJ task, there was a significant change in the TOJ measured when the two stimuli were located unilaterally on digits 2 and 3. However, in the presence of the same 25 Hz conditioning stimulus, the TOJ obtained when the two stimuli were delivered bilaterally was not impacted. TDT measures were not impacted to the same degree by the concurrent stimuli that were delivered to the unilateral or bilateral stimulus sites. This led to the speculation that the impact that the conditioning stimuli – which were sinusoidal, periodic and synchronous – had on TOJ measures was due to the synchronization of adjacent cortical ensembles in somatosensory cortex, and that the synchronization of these cortical ensembles could have been responsible for the degradation in temporal order judgment. In order to more directly test this hypothesis, the synchronized 25 Hz conditioning stimuli that were delivered during the initial TOJ test were replaced with <it>asynchronous </it>non-periodic 25 Hz conditioning stimuli, and these asynchronous conditioning stimuli did not impact the TOJ measures.</p> <p>Conclusion</p> <p>The results give support to the theory that synchronization of cortical ensembles in SI could significantly impact the topography of temporal perception, and these findings are speculated to be linked mechanistically to previously reported co-activation plasticity studies. Additionally, the impact that such synchronizing conditioning stimuli have on TOJ – which can be measured relatively quickly – could provide an effective means to assess the functional connectivity of neurologically compromised subject populations.</p

    A quantitative method for determining spatial discriminative capacity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The traditional two-point discrimination (TPD) test, a widely used tactile spatial acuity measure, has been criticized as being imprecise because it is based on subjective criteria and involves a number of non-spatial cues. The results of a recent study showed that as two stimuli were delivered simultaneously, vibrotactile amplitude discrimination became worse when the two stimuli were positioned relatively close together and was significantly degraded when the probes were within a subject's two-point limen. The impairment of amplitude discrimination with decreasing inter-probe distance suggested that the metric of amplitude discrimination could possibly provide a means of objective and quantitative measurement of spatial discrimination capacity.</p> <p>Methods</p> <p>A two alternative forced-choice (2AFC) tracking procedure was used to assess a subject's ability to discriminate the amplitude difference between two stimuli positioned at near-adjacent skin sites. Two 25 Hz flutter stimuli, identical except for a constant difference in amplitude, were delivered simultaneously to the hand dorsum. The stimuli were initially spaced 30 mm apart, and the inter-stimulus distance was modified on a trial-by-trial basis based on the subject's performance of discriminating the stimulus with higher intensity. The experiment was repeated via sequential, rather than simultaneous, delivery of the same vibrotactile stimuli.</p> <p>Results</p> <p>Results obtained from this study showed that the performance of the amplitude discrimination task was significantly degraded when the stimuli were delivered simultaneously and were near a subject's two-point limen. In contrast, subjects were able to correctly discriminate between the amplitudes of the two stimuli when they were sequentially delivered at all inter-probe distances (including those within the two-point limen), and improved when an adapting stimulus was delivered prior to simultaneously delivered stimuli.</p> <p>Conclusion</p> <p>Subjects' capacity to discriminate the amplitude difference between two vibrotactile stimulations was degraded as the inter-stimulus distance approached the limit of their two-point spatial discriminative capacity. This degradation of spatial discriminative capacity lessened when an adapting stimulus was used. Performance of the task, as well as improvement on the task with adaptation, would most likely be impaired if the cortical information processing capacity of a subject or subject population were systemically altered, and thus, the methods described could be effective measures for use in clinical or clinical research applications.</p

    Response of SII cortex to ipsilateral, contralateral and bilateral flutter stimulation in the cat

    Get PDF
    BACKGROUND: A distinctive property of SII is that it is the first cortical stage of the somatosensory projection pathway that integrates information arising from both sides of the body. However, there is very little known about how inputs across the body mid-line are processed within SII. RESULTS: Optical intrinsic signal imaging was used to evaluate the response of primary somatosensory cortex (SI and SII in the same hemisphere) to 25 Hz sinusoidal vertical skin displacement stimulation ("skin flutter") applied contralaterally, ipsilaterally, and bilaterally to the central pads of the forepaws. A localized increase in absorbance in both SI and SII was evoked by both contralateral and bilateral flutter stimulation. Ipsilateral flutter stimulation evoked a localized increase in absorbance in SII, but not in SI. The SII region that responded with an increase in absorbance to ipsilateral stimulation was posterior to the region in which absorbance increased maximally in response to stimulation of the contralateral central pad. Additionally, in the posterior SII region that responded maximally to ipsilateral stimulation of the central pad, bilateral central pad stimulation approximated a linear summation of the SII responses to independent stimulation of the contralateral and ipsilateral central pads. Conversely, in anterior SII (the region that responded maximally to contralateral stimulation), bilateral stimulation was consistently less than the response evoked from the contralateral central pad. CONCLUSIONS: The results indicate that two regions located at neighboring, but distinctly different A-P levels of the anterior ectosylvian gyrus process input from opposite sides of the body midline in very different ways. The results suggest that the SII cortex, in the cat, can be subdivided into at least two functionally distinct regions and that these functionally distinct regions demonstrate a laterality preference within SII
    • …
    corecore