33 research outputs found

    Driving the Future: Intersection of Emerging Transportation Technologies and Energy Consumption

    Get PDF
    The world of transportation is in a constant state of evolution, with emerging technologies offering greater efficiency and safety in our daily lives. However, these innovations at the same time also have far-reaching impacts on energy sectors. The rise of electric and autonomous vehicles is set to quickly transform the residential energy consumption pattern. A critical question to consider is: “How can we ensure that our energy infrastructure is ready to meet the changing demands”. To adequately prepare for this transformation, this study attempted to gain insight into the future energy pattern under different scenarios.https://pdxscholar.library.pdx.edu/trec_seminar/1249/thumbnail.jp

    Econometric Frameworks for Multivariate Models: Application to Crash Frequency Analysis

    Get PDF
    Econometric crash frequency models are a major analytical tool employed for examining the critical factors influencing crash occurrence. However, there are several methodological challenges associated with existing models suggesting a continual need to develop advanced econometric framework to address these gaps. The current dissertation contributes towards addressing the methodological challenges in crash frequency analysis for analyzing multiple crash frequency variables for the same study unit by proposing advanced econometric approaches. The first part of the dissertation contributes to safety literature by conducting a comparison exercise between the two major streams of multivariate approaches - (1) simulation-based approach and (2) analytical closed form approach - for analyzing the crash counts considering different crash types. In the second part of the dissertation, we propose an alternative and mathematically simpler approach for analyzing multiple crash frequency variables for the same study unit by recasting a multivariate distributional problem as a repeated measures univariate problem. The recasting allows us to estimate parsimonious model systems thus improving parameter estimation efficiency. The third part of the dissertation contributes to burgeoning econometric and safety literature by developing a joint modeling approach that can accommodate for several dependent variables within a parsimonious structure. By recasting the analysis levels for dependent variables, the proposed approach allows for flexible consideration of crashes by type and severity within a single framework. The final part of the dissertation contributes to literature on crash frequency analysis by accommodating population heterogeneity in the impact of exogenous variables. The empirical analysis in this dissertation is based on traffic analysis zone (TAZ) level crash count data for both motorized and non-motorized crashes from Central Florida for the year 2016

    A Joint Econometric Approach for Modeling Crash Counts by Collision Type

    Get PDF
    In recent years, there is growing recognition that common unobserved factors that influence crash frequency by one attribute level are also likely to influence crash frequency by other attribute levels. The most common approach employed to address the potential unobserved heterogeneity in safety literature is the development of multivariate crash frequency models. The current study proposes an alternative joint econometric framework to accommodate for the presence of unobserved heterogeneity – referred to as joint negative binomial-multinomial logit fractional split (NB-MNLFS) model. Furthermore, the study undertakes a first of its kind comparison exercise between the most commonly used multivariate model (multivariate random parameter negative binomial model) and the proposed joint approach by generating an equivalent log-likelihood measure. The empirical analysis is based on the zonal level crash count data for different collision types from the state of Florida for the year 2015. The model results highlight the presence of common unobserved effects affecting the two components of the joint model as well as the presence of parameter heterogeneity. The equivalent log-likelihood and goodness of fit measures clearly highlight the superiority of the proposed joint model over the commonly used multivariate approach

    Accommodating Spatio-Temporal Dependency in Airline Demand Modeling

    Get PDF
    The objective of the current study is to examine monthly air passenger departures at the airport level considering spatial interactions between airports. In this study, we develop a novel spatial grouped generalized ordered probit (SGGOP) model system of monthly air passenger departures at the airport level. Specifically, we estimate two variants of spatial models including spatial lag model and spatial error model. In the presence of repeated demand measures for the airports, we also consider temporal variations of spatial correlation effects among proximally located airports by employing space and time-based weight matrix. The proposed model is estimated using monthly air passenger departures for five years for 369 airports across the US. The proposed spatial model is implemented using composite marginal likelihood (CML) approach that offers a computationally feasible framework. From the estimation results, it is evident that air passenger departures at the airport level are influenced by different factors including MSA specific demographic characteristics, built environment characteristics, airport specific factors, spatial factors, and temporal factors. Moreover, spatial autocorrelation parameter is found to be significant validating our hypothesis of the presence of common unobserved factors associated with the spatial unit of analysis. In this study, we also perform a validation analysis to examine the predictive performance of the proposed spatial models. The results highlight the superiority of spatial error model compared to spatial lag model and the independent model that ignores the spatial interactions. Finally, we undertake an elasticity analysis to quantify the impact of the independent variables

    GroupMixNorm Layer for Learning Fair Models

    Full text link
    Recent research has identified discriminatory behavior of automated prediction algorithms towards groups identified on specific protected attributes (e.g., gender, ethnicity, age group, etc.). When deployed in real-world scenarios, such techniques may demonstrate biased predictions resulting in unfair outcomes. Recent literature has witnessed algorithms for mitigating such biased behavior mostly by adding convex surrogates of fairness metrics such as demographic parity or equalized odds in the loss function, which are often not easy to estimate. This research proposes a novel in-processing based GroupMixNorm layer for mitigating bias from deep learning models. The GroupMixNorm layer probabilistically mixes group-level feature statistics of samples across different groups based on the protected attribute. The proposed method improves upon several fairness metrics with minimal impact on overall accuracy. Analysis on benchmark tabular and image datasets demonstrates the efficacy of the proposed method in achieving state-of-the-art performance. Further, the experimental analysis also suggests the robustness of the GroupMixNorm layer against new protected attributes during inference and its utility in eliminating bias from a pre-trained network.Comment: 12 pages, 6 figures, Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD) 202

    A Systematic Unified Approach for Addressing Temporal Instability in Road Safety Analysis

    Get PDF
    Multivariate models are widely employed for crash frequency analysis in traffic safety literature. In the context of analyzing data for multiple instances (such as years), it becomes essential to evaluate the stability of parameters over time. The current research proposes a novel approach, labelled the mixed spline indicator pooled model, that offers significant enhancement relative to current approaches employed for capturing temporal instability. The proposed approach entails carefully creating independent variables that allow us to measure parameter slope changes over time and can be easily integrated into existing methodological frameworks. The current research effort compares four multivariate model systems: year specific negative binomial model, year indicator pooled model, spline indicator pooled model, and mixed spline indicator pooled model. The model performance is compared using log-likelihood and Bayesian Information Criterion. The empirical analysis is conducted using the Traffic Analysis Zone (TAZ) level crash severity records from Central Florida for the years from 2011 to 2019. The comparison results indicate that the proposed mixed spline indicator pooled model outperforms the other models providing superior data fit while optimizing the number of parameters. The proposed mixed spline model can allow a piece-wise linear functional form for the parameter and is suitable to forecast crashes for future years as illustrated in our predictive performance analysis

    Predicting Hurricane Evacuation Behavior Synthesizing Data from Travel Surveys and Social Media

    Get PDF
    Evacuation behavior models estimated using post-disaster surveys are not adequate to predict real-time dynamic population response as a hurricane unfolds. With the emergence of ubiquitous technology and devices in recent times, social media data with its higher spatio-temporal coverage has become a potential alternative for understanding evacuation behaviour during hurricanes. However, these data are often associated with selection bias and population representativeness issues. To that extent, the current study proposes a novel data fusion algorithm to combine heterogeneous data sources from transportation systems and social media, in a unified framework to understand and predict real-time population response during hurricanes. Specifically, Twitter data of 2300 users are collected for evacuation response during Hurricane Irma and augmented behaviourally (probabilistically) with a representative National Household Travel Survey (NHTS) data, thus creating a hybrid dataset to improve the representativeness as well as provide a rich set of explanatory variables for understanding the evacuation behavior. The fusion process is conducted using a probabilistic matching method based on a set of common attributes across NHTS and Twitter. The fused dataset is employed to estimate the evacuation model and a comparison exercise is conducted to evaluate the performance of the model via fusion. The model fitness measures clearly demonstrate the improvement in data fit for the evacuation model through the proposed fusion algorithm. Further, we conduct a prediction assessment to illustrate the applicability of the proposed fusion technique and the results clearly highlight the improvement in the evacuation prediction rate achieved through the fused models. The proposed data-driven methods will enhance our ability to predict time-dependent evacuation demand for better hurricane response operations such as targeted warning dissemination and improved evacuation traffic management, allowing emergency plans to be more adaptive

    Implementation of a Realistic Artificial Data Generator for Crash Data Generation

    Get PDF
    In this paper, a framework is outlined to generate realistic artificial data (RAD) as a tool for comparing different models developed for safety analysis. The primary focus of transportation safety analysis is on identifying and quantifying the influence of factors contributing to traffic crash occurrence and its consequences. The current framework of comparing model structures using only observed data has limitations. With observed data, it is not possible to know how well the models mimic the true relationship between the dependent and independent variables. Further, real datasets do not allow researchers to evaluate the model performance for different levels of complexity of the dataset. RAD offers an innovative framework to address these limitations. Hence, we propose a RAD generation framework embedded with heterogeneous causal structures that generates crash data by considering crash occurrence as a trip level event impacted by trip level factors, demographics, roadway and vehicle attributes. Within our RAD generator we employ three specific modules: (a) disaggregate trip information generation, (b) crash data generation and (c) crash data aggregation. For disaggregate trip information generation, we employ a daily activity-travel realization for an urban region generated from an established activity-based model for the Chicago region. We use this data of more than 2 million daily trips to generate a subset of trips with crash data. For trips with crashes crash location, crash type, driver/vehicle characteristics, and crash severity. The daily RAD generation process is repeated for generating crash records at yearly or multi-year resolution. The crash databases generated can be employed to compare frequency models, severity models, crash type and various other dimensions by facility type - possibly establishing a universal benchmarking system for alternative model frameworks in safety literature

    Immunologic and gene expression profiles of spontaneous canine oligodendrogliomas

    Get PDF
    Malignant glioma (MG), the most common primary brain tumor in adults, is extremely aggressive and uniformly fatal. Several treatment strategies have shown significant preclinical promise in murine models of glioma; however, none have produced meaningful clinical responses in human patients. We hypothesize that introduction of an additional preclinical animal model better approximating the complexity of human MG, particularly in interactions with host immune responses, will bridge the existing gap between these two stages of testing. Here, we characterize the immunologic landscape and gene expression profiles of spontaneous canine glioma and evaluate its potential for serving as such a translational model. RNA in situ hybridization, flowcytometry, and RNA sequencing were used to evaluate immune cell presence and gene expression in healthy and glioma-bearing canines. Similar to human MGs, canine gliomas demonstrated increased intratumoral immune cell infiltration (CD4+, CD8+ and CD4+Foxp3+ T cells). The peripheral blood of glioma-bearing dogs also contained a relatively greater proportion of CD4+Foxp3+ regulatory T cells and plasmacytoid dendritic cells. Tumors were strongly positive for PD-L1 expression and glioma-bearing animals also possessed a greater proportion of immune cells expressing the immune checkpoint receptors CTLA-4 and PD-1. Analysis of differentially expressed genes in our canine populations revealed several genetic changes paralleling those known to occur in human disease. Naturally occurring canine glioma has many characteristics closely resembling human disease, particularly with respect to genetic dysregulation and host immune responses to tumors, supporting its use as a translational model in the preclinical testing of prospective anti-glioma therapies proven successful in murine studies

    A multilevel generalized ordered probit fractional split model for analyzing vehicle speed

    No full text
    Vehicle operating speed plays a significant role in many fields of transportation engineering including safety, operation, design and management. The current research effort contributes to literature on examining vehicle speed on arterial roads methodologically and empirically. Specifically, we propose and estimate a panel mixed generalized ordered probit fractional split (PMGOPFS) model to examine critical factors contributing to vehicle operating speed on roadways. The proposed modeling framework allows for the exogenous variable impacts to vary across the alternatives. Further, the model is formulated to allow for the impact of common unobserved factors across multiple levels (roadway, segment, direction, day and time period). To the best of the authors’ knowledge, this is the first time such an econometric model is proposed and estimated in any literature (not just in transportation). The proposed model is estimated employing a maximum simulated quasi-likelihood based objective function. Vehicular speed data obtained from 8 arterial roads in Orlando for the year 2016 is used for estimating the model. The data is obtained for weekday morning and evening peak and off-peak hours for one randomly chosen week for each roadway throughout the year. The exogenous variables that are considered in the current empirical study include geometry, roadway, traffic, land use and environmental attributes. The model estimation results are further augmented by conducting elasticity analysis to highlight the important factors affecting the vehicular speed profile
    corecore