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ABSTRACT 
Multivariate models are widely employed for crash frequency analysis in traffic safety literature. 
In the context of analyzing data for multiple instances (such as years), it becomes essential to 
evaluate the stability of parameters over time. The current research proposes a novel approach, 
labelled the mixed spline indicator pooled model, that offers significant enhancement relative to 
current approaches employed for capturing temporal instability. The proposed approach entails 
carefully creating independent variables that allow us to measure parameter slope changes over 
time and can be easily integrated into existing methodological frameworks. The current research 
effort compares four multivariate model systems: year specific negative binomial model, year 
indicator pooled model, spline indicator pooled model, and mixed spline indicator pooled model. 
The model performance is compared using log-likelihood and Bayesian Information Criterion. The 
empirical analysis is conducted using the Traffic Analysis Zone (TAZ) level crash severity records 
from Central Florida for the years from 2011 to 2019. The comparison results indicate that the 
proposed mixed spline indicator pooled model outperforms the other models providing superior 
data fit while optimizing the number of parameters. The proposed mixed spline model can allow 
a piece-wise linear functional form for the parameter and is suitable to forecast crashes for future 
years as illustrated in our predictive performance analysis.  
 
Keyword: Crash severity, Crash frequency, Temporal instability, Unobserved effects, Mixed 
Spline Pooled Negative Binomial Model.  
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1. BACKGROUND 
1.1 Motivation 
Crash frequency models are employed in road safety literature to identify the factors affecting 
crash occurrence. These frequency models are developed either at the microscopic level (such as 
intersection and segment) or the macroscopic level (such as county and Traffic Analysis Zone 
(TAZ)). Earlier research efforts focused on employing a single dependent variable – total number 
of crashes – to study crash occurrence using univariate count regression models such as Poisson, 
Negative Binomial, and Poisson Log-Normal models (Anastasopoulos & Mannering, 2009; Barua 
et al., 2014; Bhowmik et al., 2018; Cai et al., 2018; Chiou et al., 2014; Lord & Mannering, 2010; 
Yasmin & Eluru, 2018). The univariate model systems were enhanced by incorporating the 
influence of unobserved factors on crash frequency via different random parameter univariate 
models (Huo et al., 2020; Z. Li et al., 2019; Venkataraman et al., 2013). In recent years, there is 
growing recognition that focusing on a single dependent variable can potentially mask the variation 
in the crash frequency variable due to different attributes such as severity, crash type, and crash 
location. The recognition has resulted in the consideration of crash frequency by attribute levels – 
resulting in multiple crash frequency variables. While separate univariate models can be employed 
to study these crash frequency variables, it is more appropriate to develop a multivariate model 
that recognizes that the different crash frequency variables for an observation are likely to be 
closely affected by several common unobserved attributes (Behnood & Mannering, 2015; 
Bhowmik et al., 2022; Malyshkina & Mannering, 2009; Mannering et al., 2016; Yasmin et al., 
2014; Yasmin & Eluru, 2013). The different frameworks employed for modeling multiple crash 
frequency variables in a joint framework include multivariate Poisson, multivariate Negative 
Binomial model, multivariate Poisson Log-Normal model, joint crash frequency and fractional 
split model systems (Negative Binomial Ordered Fractional Split model and Negative Binomial 
Multinomial Fractional Split model) (Bhowmik et al., 2018; Lee et al., 2014; Yasmin & Eluru, 
2018; Ye et al., 2013). The aforementioned multivariate frameworks are well equipped to address 
the impact of observed and unobserved factors across the multiple dependent variables for a single 
instance of data (such as a single year). With increasing availability of data for multiple instances 
(such as multiple years), there are emerging challenges to employ these multivariate frameworks. 
As discussed in Mannering, 2018, traditional approaches to safety implicitly assume that the 
impact of independent variables are stable over time in crash frequency and severity models. 
However, driver behavior changes influenced by cognitive biases, attitudes and personal 
experience over time might contribute to a changing crash frequency and severity profiles  
(Mannering, 2018). Thus, when data for multiple instances is available, it would be important to 
evaluate if parameters are stable over time and identify procedures that can pinpoint the variation 
(if any). As the dimensions of the dependent variables increase substantially (with data instances 
>3), accommodating for the potential parameter space of common unobserved factors is far from 
straight forward.  

The existing solutions employed to tackle these challenges associated with data from 
multiple instances in safety literature can be organized into two categories (see (Kabli et al., 2023) 
for a brief discussion on this categorization). In the first category, studies employ a pooled model 
assuming temporal stability across all instances and then compare the pooled model’s fit with 
instance-specific models’ fit using an appropriate likelihood-ratio test (see (Alogaili & Mannering, 
2022; Islam et al., 2020; Islam & Mannering, 2021; Se et al., 2021a, 2022; Song et al., 2020; 
Tamakloe et al., 2020; C. Wang et al., 2022b; Zamani et al., 2021)). This approach circumvents 
the dimensionality challenges by estimating models at the extremes of the temporal spectrum. The 
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pooled model treats the data as being generated in a single instance while the instance specific 
model avoids any need for interaction across instances. However, the instance specific model 
results in the highest numbers of parameters as every parameter is implicitly assumed to be 
temporally unstable. The comparison in this approach simply tests if temporal stability exists or 
not; the approach cannot identify which parameters exhibit a statistically discernible difference 
over time.  

A second approach employs a “pairwise” test to investigate the temporal instability 
between any two years by examining whether the parameters estimated from one subgroup are 
statistically different from another (see Al-Bdairi et al., 2020; Alnawmasi & Mannering, 2019; 
Behnood & Mannering, 2019, 2015; Dabbour, 2017; Hou et al., 2020, 2022; Hu et al., 2013; Islam 
et al., 2020; Y. Li et al., 2021; Meng et al., 2021; Pang et al., 2022a, 2022b; Ren & Xu, 2023; Se 
et al., 2021b; Tamakloe et al., 2021; Tirtha et al., 2020; C. Wang et al., 2022a; K. Wang et al., 
2019; Yan et al., 2021c, 2021a, 2021b, 2022, 2023a, 2023b; Yu et al., 2021; Zubaidi et al., 2021). 
The approach relative to the first category of studies offers additional information on which of the 
instance pairs exhibit stability in terms of parameters. However, even in this approach, the stability 
is compared for the entire set of variables. Thus, there is no information available on specific 
parameter stability. Thus, while instance specific models from these two approaches accommodate 
for temporal instability accurately, they do not identify variables that are temporally unstable and 
fail to provide a process for employing these models into the future.  

Recently, Alnawmasi and Mannering, 2023 and Dzinyela et al., 2024 have proposed 
approaches to address this limitation. In these studies, the authors employ approaches to compare 
three variants of the models: (a) unconstrained models, (b) constrained models, and (c) partially 
constrained models. The approach compares two models using the log-likelihood ratio test to 
identify the more suited form of temporal stability based on data fit. The approach, while very easy 
to implement, requires the estimation of separate models and pair-wise test statistics for each 
individual temporal parameter variation possibility. The number of possible models to be estimated 
can become very large in scenarios with several temporal instances (>4) and independent variables 
(>5). For example, to test for all possible temporal variations for a single independent variable 
with 10 years of data, the full set of models to be developed will be of the order of 210 (see 
explanation note in the Appendix). When we need to do this simultaneously for several 
independent variables, the number can be even larger. To be sure, estimating these models is not 
complicated. It simply would require us to develop an algorithmic approach to carefully test each 
possibility for temporal variation prior to concluding that an exhaustive test has been conducted. 
A for loop-based routine in Python or R should be able to generate all the requisite test scores for 
analysis given adequate time is invested.  

 
1.2 Study in Context 
In recent research efforts by Eluru and colleagues, a framework has been proposed to assess the 
stability of each parameter across temporal periods – labelled year interaction pooled model. This 
approach involves pooling the data into a unified data frame, selecting a base year as reference, 
and estimating deviations across multiple time periods. By incorporating this base and deviation 
approach into the equations, researchers can assess the significance of the deviation for each 
parameter. If the deviation is found to be statistically significant, it indicates that the variable has 
a distinct effect in the corresponding year relative to the base year. By analyzing the significance 
of deviations, researchers can determine when and how certain variables exhibit temporal 
variability. In the worst-case scenario, the number of parameters required will remain the same as 
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the traditional approach while in the best-case scenario, the proposed framework can significantly 
reduce the number of parameters (D*X). The approach has been employed in several research 
efforts and has shown significant reduction in parameters needed relative to single year-based 
models (see (Kabli et al., 2023; Marcoux et al., 2018; Tirtha et al., 2020)). 

However, the pooled approach employed so far has one significant limitation. In the 
approach, the deviations in parameter impacts are compared with the reference year. However, this 
does not provide an easy way to examine if year specific deviations across years might be 
significantly different relative to the base year but yet not different among themselves. For 
example, the impact of AADT might be different for 2014 and 2015 relative to 2009. However, 
the approach does not allow us to easily evaluate if we can employ a single parameter to represent 
the difference from 2014 and 2015. A statistical test will need to be added to test this accurately. 
The testing of such effects across several pairs (or multiples) will be tedious and resource intensive.  
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Figure 1. Year Specific Variable Creation and Spline Formulation Method 
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In our research, we propose a novel approach that builds on the pooled data approach while 
also making it easier to evaluate differences across parameters. The new approach labelled the 
spline indicator pooled model, utilizes the same pooling approach discussed earlier, but instead of 
creating year-specific dummies, we adopt the spline approach to creating temporal variations. In 
this approach, as opposed to creating year specific dummy variables, we create time variables 
using the following approach:  

Year1 = Max(Yearrecord – Yearbase, 0); 
Year2 = Max(Yearrecord – Yearbase -1,0); 
… 
YearN = Max(Yearrecord – Yearbase –(N-1),0) 

 where Yearrecord corresponds to year of the observation, and Yearbase corresponds to the year 
of data prior to the first year used for analysis. The approach will yield the same number of 
variables as the year dummy approach (N variables). In the model estimation effort, the 
independent variable is interacted with the newly created year variables to estimate temporal 
effects. The proposed approach effectively serves as a piecewise linear formulation for each 
parameter over the years.  

The spline variables allow for easy identification of the real changes in slope over time for 
the different variables. These variables are used directly to get year specific variations. These 
variables can be interacted with any independent variable to test the temporal stability of that 
variable. The advantage of these variables is illustrated in Figure 1 (see (Eluru & Gayah, 2022) for 
another example). Figure 1 presents an example with four time periods (2018, 2019, 2020 and 
2021). Yearbase in the example will be 2017. The Year specific variables created are shown on the 
top and their impact on propensity are presented on the bottom of Figure 1. We can see that the 
four years provide four degrees of freedom for estimation represented as C1, C2, C3 and C4. C1 
serves as the base variable impact and the spline variables provide the year specific deviations as 
2019 – C2, 2020 – C3 and 2021 – C4. If any of the year specific parameters are insignificant then 
the deviation for that year is 0. The approach is quite straightforward to implement and only 
requires the creation of additional independent variables.  

Further, the proposed approach allows us to generate a relationship of how parameters vary 
over time. This linearized relationship will allow us to generate potential values of the parameters 
for future years. Thus, the proposed model system enables us to develop future forecasts while 
allowing temporal variation. The current approaches are geared toward estimating the temporal 
variation without offering any information on future parameter variation. The methodological 
frameworks currently employed in research or practice can easily incorporate these variables. The 
current research effort compares four model multivariate model systems: (a) year specific negative 
binomial (YSNB), (b) year indicator pooled model and (c) spline indicator pooled model and (d) 
mixed spline indicator pooled model. The model performance is compared using log-likelihood 
and Bayesian Information Criterion. The modeling exercise is conducted using the Traffic 
Analysis Zone (TAZ) level crash records from four counties of Central Florida for the years 2011 
to 2019 considering a comprehensive set of exogenous variables.  

The remainder of the paper is structured as follows: The methodological framework used 
in the study is presented in the second section, and the dataset is thoroughly described in the third 
section. The fourth section covers the interpretation of the model results, and the last section 
contains some concluding remarks. 
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2 ECONOMETRIC FRAMEWORK 
We consider four injury severity categories (no injury, minor injury, non-incapacitating injury, and 
serious injury crashes). Thus, in estimating Multivariate Panel Mixed NB model, we examine four 
different Panel NB models considering 9 years of crash data for four different injury severity types 
simultaneously. In this section, we briefly provide details of the model frameworks employed in 
our study.  

Let’s assume 𝑖𝑖 (𝑖𝑖 = 1,2,3, …𝑁𝑁,𝑁𝑁 = 1,200) be an index to represent observation unit 
(TAZs); j 𝑗𝑗 (𝑗𝑗 = 1,2,3, … 𝐽𝐽, 𝐽𝐽 = 4)  be an index for different crash severity levels and 
𝑡𝑡 (𝑡𝑡 = 1,2,3, …𝑇𝑇,𝑇𝑇 = 9) be the index to represent different years of crash data at observation unit 
𝑖𝑖. In this empirical study, the index 𝑗𝑗 may take the values of no injury (𝑗𝑗 =1), minor injury (𝑗𝑗 =2), 
non-incapacitating injury (𝐽𝐽 =3), and serious injury (𝑗𝑗 =4) crashes. Using these notations, the 
equation system for modeling crash count across crash severities 𝑗𝑗 and different years 𝑡𝑡 in the usual 
NB formulation can be written in equation 1 as: 

𝑃𝑃�𝑐𝑐𝑖𝑖𝑖𝑖,𝑡𝑡� =  
𝛤𝛤 �𝑐𝑐𝑖𝑖𝑖𝑖,𝑡𝑡 + 1

𝛼𝛼𝑖𝑖,𝑡𝑡
�

𝛤𝛤�𝑐𝑐𝑖𝑖𝑖𝑖,𝑡𝑡 + 1�𝛤𝛤 � 1
𝛼𝛼𝑖𝑖,𝑡𝑡

�
�

1
1 + 𝛼𝛼𝑖𝑖,𝑡𝑡𝜇𝜇𝑖𝑖𝑖𝑖,𝑡𝑡

�

1
𝛼𝛼𝑗𝑗,𝑡𝑡

�1 −
1

1 + 𝛼𝛼𝑖𝑖,𝑡𝑡𝜇𝜇𝑖𝑖𝑖𝑖,𝑡𝑡
�
𝑐𝑐𝑖𝑖𝑗𝑗,𝑡𝑡

 (1) 

where, 𝑐𝑐𝑖𝑖𝑖𝑖,𝑡𝑡 be the index for crash counts specific crash severity level 𝑗𝑗 and year 𝑡𝑡 occurring over 
a period of time in TAZ 𝑖𝑖. 𝑃𝑃�𝑐𝑐𝑖𝑖𝑖𝑖,𝑡𝑡� is the probability that TAZ 𝑖𝑖 has 𝑐𝑐𝑖𝑖𝑖𝑖,𝑡𝑡 number of crashes specific 
to crash severity 𝑗𝑗 for year 𝑡𝑡. Γ(∙) is the gamma function, 𝛼𝛼𝑖𝑖,𝑡𝑡 is NB over dispersion parameter for 
the corresponding severity level 𝑗𝑗  and year 𝑡𝑡 . 𝜇𝜇𝑖𝑖𝑖𝑖,𝑡𝑡 is the expected number of crashes for crash 
severity level 𝑗𝑗 occurring in TAZ 𝑖𝑖 over a given time period for year 𝑡𝑡. We can express 𝜇𝜇𝑖𝑖𝑖𝑖,𝑡𝑡 as a 
function of explanatory variables by using a log-link function as follows in equation 2: 
 
𝜇𝜇𝑖𝑖𝑖𝑖,𝑡𝑡 = 𝐸𝐸�𝑐𝑐𝑖𝑖𝑖𝑖,𝑡𝑡|𝑧𝑧𝑖𝑖𝑖𝑖,𝑡𝑡� = 𝑒𝑒𝑒𝑒𝑒𝑒�(𝛿𝛿𝑖𝑖,𝑡𝑡 + 𝜁𝜁𝑖𝑖𝑖𝑖,𝑡𝑡)𝑧𝑧𝑖𝑖,𝑡𝑡 + 𝑙𝑙𝑙𝑙�𝑆𝑆𝑆𝑆_𝑙𝑙𝑒𝑒𝑙𝑙𝑙𝑙𝑡𝑡ℎ𝑖𝑖,𝑡𝑡� + 𝜂𝜂𝑖𝑖𝑡𝑡 + 𝜙𝜙𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖,𝑡𝑡� (2) 

where, 𝑧𝑧𝑖𝑖,𝑡𝑡 is a vector of explanatory variables associated with TAZ 𝑖𝑖 for the year 𝑡𝑡. 𝑆𝑆𝑆𝑆_𝑙𝑙𝑒𝑒𝑙𝑙𝑙𝑙𝑡𝑡ℎ𝑖𝑖,𝑡𝑡 
is the total segment length (in mile) in TAZ 𝑖𝑖 for each year 𝑡𝑡 and this variable is used as an offset 
variable in the NB model specification. 𝛿𝛿𝑖𝑖,𝑡𝑡 is a vector of coefficients to be estimated for each 
severity level across each year. 𝜁𝜁𝑖𝑖𝑖𝑖,𝑡𝑡 is a vector of unobserved factors on crash count propensity 
associated with injury severity type 𝑗𝑗 for TAZ 𝑖𝑖 and its associated zonal characteristics, assumed 
to be a realization from standard normal distribution: 𝜁𝜁𝑖𝑖𝑖𝑖,𝑡𝑡~𝑁𝑁(0,𝜋𝜋2). In our current analysis, there 
are two levels of unobserved factors that can simultaneously impact the number of crashes for 
different severity levels over the nine years period: 1) within TAZ 𝑖𝑖 and year 𝑡𝑡, crashes of different 
severity levels could be correlated; 𝜂𝜂𝑖𝑖𝑡𝑡 captures such correlations and 2) for same severity level 𝑗𝑗, 
crashes can be correlated across the years as same TAZ 𝑖𝑖 is repeated 9 times (9 years);  𝜙𝜙𝑖𝑖𝑖𝑖captures 
such correlations. Finally, 𝜀𝜀𝑖𝑖𝑖𝑖,𝑡𝑡 is a gamma distributed error term with mean 1 and variance 𝛼𝛼𝑖𝑖,𝑡𝑡. 

Here, it is important to note that the two unobserved heterogeneities that impact different 
crash levels (over the severities and over the years) can vary across TAZs. Therefore, in the current 
study, the correlation parameters 𝜂𝜂𝑖𝑖𝑡𝑡 and 𝜙𝜙𝑖𝑖𝑖𝑖  are parametrized as a function of observed attributes 
as follows in equation 3 and equation 4 respectively: 

 
𝜂𝜂𝑖𝑖𝑡𝑡 = 𝛾𝛾𝑖𝑖,𝑡𝑡𝑠𝑠𝑖𝑖,𝑡𝑡 (3) 
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 𝜙𝜙𝑖𝑖𝑖𝑖 = þ𝑖𝑖,𝑖𝑖𝑞𝑞𝑖𝑖,𝑡𝑡 (4) 

where, 𝑠𝑠𝑖𝑖,𝑡𝑡 and 𝑞𝑞𝑖𝑖,𝑡𝑡 are vector of exogenous variables, 𝛾𝛾𝑖𝑖,𝑡𝑡  and þ𝑖𝑖,𝑖𝑖 are a vector of unknown 
parameters to be estimated (including a constant). In examining the model structure of crash count 
across different injury severity types over the years, it is necessary to specify the structure for the 
unobserved vectors 𝜁𝜁, 𝛾𝛾 𝑎𝑎𝑙𝑙𝑑𝑑 þ represented by Ω. In this paper, it is assumed that these elements 
are drawn from independent normal distributions: Ω~𝑁𝑁(0, (𝜋𝜋2,𝜎𝜎2,𝜓𝜓2)). Thus, conditional on Ω, 
the likelihood function for the joint probability can be expressed in equation 5 as: 
 

𝐿𝐿𝑖𝑖 = � ���𝑃𝑃�𝑐𝑐𝑖𝑖𝑖𝑖,𝑡𝑡��
𝐽𝐽

𝑖𝑖=1

𝑇𝑇

𝑡𝑡=1𝛺𝛺
𝑓𝑓(𝛺𝛺)𝑑𝑑𝛺𝛺 (5) 

Finally, the log-likelihood function is as follows in equation 6:       
  

 𝐿𝐿𝐿𝐿 = ∑ 𝐿𝐿𝑙𝑙(𝐿𝐿𝑖𝑖,𝑡𝑡)𝑖𝑖  (6) 

 
All the parameters in the model are estimated by maximizing the logarithmic function 𝐿𝐿𝐿𝐿 

presented in equation 6using routines coded in GAUSS Matrix Programming software (Aptech, 
2015).  

 

3 DATA DESCRIPTION 
The analysis was conducted using crash data from 2011 to 2019 obtained from Signal Four 
Analytics (S4A) database for the Greater Orlando Region with 1611 Traffic Analysis Zones 
(TAZs). We used four injury severity categories: no injury, minor injury, non-incapacitating 
injury, and serious injury (incapacitating injury and fatal injury were combined) as dependent 
variables for this study. A summary of how crash frequency mean varies by severity and year is 
provided in Figure 2. The results indicate an overall increase in mean crash frequency across all 
severity levels (relative to 2011). While the first three injury severity levels exhibit a monotonic 
increase in the tie period of analysis, we notice an up and down trend for the serious injury 
category.  

 

 

Year No 
Injury 

Minor 
Injury 

Non-
Incapacitating 

Serious 
Injury 

2011 17.56 4.10 3.52 0.87 
2012 22.53 5.03 3.33 0.92 
2013 27.12 5.98 3.61 1.20 
2014 29.90 6.52 3.67 1.69 
2015 32.46 7.12 3.88 1.97 
2016 31.83 7.50 4.06 1.70 
2017 34.63 7.93 4.17 1.54 
2018 36.00 8.69 4.44 1.36 
2019 36.49 9.02 4.77 1.28 
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Figure 2. Study Area Map and Yearly Crash Mean by Severity Type for 1611 TAZ’s 

In this study, we consider a wide range of independent variables, such as 
sociodemographic, land use, and transportation infrastructure characteristics. Sociodemographic 
variables are sourced from American Community Survey (ACS) data. Transportation 
infrastructure variables are processed in ArcGIS using roadway shapefiles hosted by the Florida 
Department of Transportation (FDOT). Land use variables are processed from high-resolution 
parcel data provided by Florida Department of Revenue (FDOR). The independent variables 
considered in our analysis are summarized in Table 1.  
 
Table 1: Summary Statistics of Exogenous Variables (Zonal Level) 
 

Variable Names (N=1611) Description Min Max Mean Standard 
Deviation 

Proportion of urban road 
Urban Road Length in 
TAZ/Total Road Length in 
TAZ 

0.000 1.000 0.092 0.272 

Proportion of rural road 
Rural Road Length in TAZ 
/ Total Road Length in 
TAZ 

0.000 1.000 0.867 0.326 

Proportion of arterial road 
Arterial Road Length in 
TAZ / Total Road Length 
in TAZ 

0.000 1.000 0.385 0.376 

Proportion of collector road 
Collector Road Length in 
TAZ /Total Road Length 
in TAZ 

0.000 1.000 0.455 0.383 

Proportion of Freeway 
Freeway Length in TAZ / 
Total Road Length in TAZ 

0.000 1.000 0.088 0.214 

Proportion of local road 
Local Road Length in TAZ 
/ Total Road Length in 
TAZ 

0.000 1.000 0.030 0.119 

Proportion of divided road 
Ln (Divided Road Length 
in TAZ) 0.000 1.000 0.483 0.350 

Average speed Ln (Average Speed of 
major roads in TAZ) 

0.000 4.248 3.487 0.968 

Speed greater than 55 mph 

Road Length with 
Speed>55 mph in TAZ 
/Total Road Length in 
TAZ 

0.000 1.000 0.196 0.324 

Intersection Density 
Ln (Traffic Intersection 
Number in TAZ) 0.000 4.234 2.010 1.063 

Signal Density Ln (Traffic Signal Number 
in TAZ) 

0.000 2.079 0.155 0.382 



Shabab, Bhowmik, Zaki, and Eluru 
 

8 
 

 
 

Proportion of poor pavement 
Poor Pavement Length in 
TAZ /Total Pavement 
Length in TAZ 

0.000 1.000 0.066 0.200 

Proportion of agricultural land 
Agricultural land area in 
TAZ/Total land area in 
TAZ 

0.000 1.000 0.109 0.219 

Proportion of industrial land Industrial land area in TAZ 
/Total land area in TAZ 

0.000 0.928 0.037 0.103 

Proportion of institutional 
land 

Institutional land area in 
TAZ /Total land area in 
TAZ 

0.000 0.754 0.027 0.059 

Proportion of other land 
Others land area in TAZ 
/Total land area in TAZ 0.000 1.000 0.059 0.101 

Proportion of public land Public land area in TAZ 
/Total land area in TAZ 

0.000 1.000 0.066 0.133 

Proportion of recreational land 
Recreational land area in 
TAZ /Total land area in 
TAZ 

0.000 0.992 0.013 0.064 

Proportion of residential land 
Residential land area in 
TAZ /Total land area in 
TAZ 

0.000 1.000 0.362 0.281 

Proportion of retail land 
Retail land area in TAZ 
/Total land area in TAZ 0.000 1.000 0.128 0.198 

Proportion of vacant land Vacant land area in TAZ 
/Total land area in TAZ 

0.000 1.000 0.191 0.188 

Proportion of waterbody 
Water land area in TAZ 
/Total land area in TAZ 

0.000 1.000 0.009 0.042 

Land use mix 

Land use mix = 

�−∑ (𝑝𝑝𝑘𝑘(𝑙𝑙𝑙𝑙𝑝𝑝𝑘𝑘))𝑘𝑘
𝑙𝑙𝑙𝑙𝑙𝑙

�, where 𝑘𝑘 is 

the category of land-use, 𝑒𝑒 
is the proportion of the 
developed land area for 
specific land-use, 𝑁𝑁  is the 
number of land-use 
categories 

0.000 0.900 0.366 0.152 

Population density TAZ Population Count/ 
Total area of TAZ in acre 

0.009 24.637 3.210 2.785 

Employment density 
Total Employed Count in 
TAZ/Total area of TAZ in 
acre 

0.004 13.599 1.720 1.594 

Average Income 
TAZ Average 
Income/TAZ Employment 
Number 

1.564 6.826 3.179 0.700 
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Proportion of non-motorized 
commuter 

Proportion of non-
motorized commuter in 
TAZ 

0.000 13.242 0.424 0.823 

Average annual daily traffic Ln (AADT) 0.000 12.859 8.559 2.820 

Percentage of heavy vehicle (Truck AADT/AADT) * 
100 

0.000 40.197 7.539 5.340 

  
The reader would note that the variation over time in independent variables for crash 

frequency datasets at the macrolevel are likely to be smaller than the variation over time in 
independent variables for crash severity datasets. In our research analysis, we consider a larger 
time horizon (10 years) and thus we observed more variability in independent variables (relative 
to temporal studies with smaller time horizons). In the interest of space, we briefly discuss 
variations for a subset of the independent variables. The reader will note that the mean and standard 
deviation values vary differently for different variables over time. For example, for population 
density, the variable mean varies from 3.01 in 2011 to 3.49 in 2019. Thus, we observe there is 
substantial variation - 16% over 10 years - in our analysis. We can see similar trends for multiple 
variables including employment density (a variation of 11%), percentage of heavy vehicles (19%), 
and proportion of residential land (17%). The reader will also note that some variables in the 
dataset show smaller variations (less than ±5%). Overall, it is beneficial to examine variations in 
independent variables prior to developing models.  
 

4 EMPIRICAL ANALYSIS 
4.1 Model specification and overall measure of fit 
The dimensionality of the dependent variables in our study is 36 (4 severity levels and 9 years). 
The empirical study involves a series of model estimation from three approaches: 1) traditional 
model framework where individual Year Specific Negative Binomial model (YSNB) and 2) year 
indicator pooled negative binomial model (YIPNB), and 3) spline indicator pooled negative 
binomial model (SIPNB). The three model systems are evaluated based on Bayesian Information 
Criterion (BIC). BIC (log-likelihood at convergence) values for the three models are: (a.) YSNB 
model (356 parameters) is 232723.58, (b.) YIPNB model (152 parameters) is 230470.03, and (c.) 
SIPNB model (122 parameters) is 230406.68. The comparison exercise highlights two important 
aspects. First, the number of parameters required in pooled models are significantly lower than the 
year specific models. The difference clearly highlights the parsimonious nature of pooled 
frameworks employed in our study. Second, the pooled models provide a significantly improved 
data fit relative to their traditional counterparts (year specific NB models) as indicated by their 
lower BIC values. Second, within the pooled approaches, the SIPNB model shows considerable 
improvement in data fit compared to the YIPNB model. Finally, the results highlight how the 
additional flexibility from the spline model reduces the number of parameters from the year 
indicator model without a significant drop in data fit.  

For the best performing spline model incorporates unobserved heterogeneity along two 
dimensions: i) severity level correlation across each year and ii) temporal correlations across 
severity levels. The BIC (log-likelihood at convergence) for the spline model with unobserved 
heterogeneity with 131 parameters is 219819.44 (-109301.40). The BIC value is significantly 
better than the simple spline model. The improvement in model fit highlights the contribution of 
severity and temporal factor specific unobserved heterogeneity.  
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4.2 Model Estimation Results 
We describe the results of the spline model with unobserved heterogeneity effects. The spline 
indicator variable introduces several parameter specific deviations over time. Thus, we present our 
findings through two comprehensive tables each offering valuable insights into the temporal 
fluctuations as well as the overall effect of the variables on the crash severity components.  

In the first table (Table 2), we conduct a comprehensive examination of the temporal 
fluctuations of each variable's impact on crash severity. For the base year (e.g., 2011), we provide 
the slopes (coefficient) representing the variable's effect on the corresponding crash severity level. 
Then, we calculate the deviations in these slopes for each subsequent year (e.g., 2012 compared to 
2011, 2013 compared to 2012, and so forth). These deviations allow us to determine whether the 
influence of each variable varies significantly over time or remains relatively stable. When the 
deviations are statistically significant, they indicate variations in the variable's effect across 
different years. For example, consider the effect of proportion of arterial roads estimated in the no 
injury crash count components over the years. In 2011, we observed a positive impact indicating 
a rise in no injury crash counts with increased proportion of arterial roads. However, the effect 
significantly changed over the next three years as indicated by the significant variation in slope for 
2012, 2013 and 2014 in Table 2 (a downward shift in 2012 compared to 2011; an upward shift in 
2013 compared to 2012 and an again downward shift in 2014 compared to 2013). Interestingly, 
after 2014, the effect remained remarkably stable, showing no significant fluctuation (2014 to 
2019).  

The second table ( 
Table 3) presents the net effect of the variables on different severity components across the years. 
A positive (negative) sign for a variable in  

Table 3 signifies that an increase in the respective variable is likely to result in more (less) motor 
vehicle crashes for the corresponding crash severity level, specific to that year. For instance, with 
respect to proportion of arterial roads effect on no injury crash counts, the slope was found to be 
0.37 for year 2011 (as presented in Table 2) and hence the overall impact is simply 0.37 for the 
year 2011. In 2012, the deviation was found to be -0.561 compared to 2011 (Table 2) and 
therefore, the net effect for 2012 would be: 0.37*2+(-0.561)*1 = 0.179 (please see  

Table 3). For 2013, we found another significant deviation of 0.311 relative to year 2012 as 
indicated in Table 2. So, the net effect of the variable in 2013 would be:  0.370*3+(-
0.561)*2+0.311 = 0.299 (see  

Table 3). Finally, in 2014, we observed additional deviation from 2013 and hence, the net 
effect in 2014 would be: 0.370*4+(-0.561)*3+0.311*2-0.139 = 0.288.We did not find any other 
significant deviation after 2014 and hence, the slopes remained the same as in 2014 for all the 
other years from 2015. For example, the net effect of the proportion of arterial roads on no injury 
crash counts in the year 2017 would be: is 0.370*7+(-0. 561)*6+0.311*5-0.139*4 = 0.222. 

  
Table 2: Mixed Spline Indicator Pooled Negative Binomial Model (MSIPNB) Results with Base 
and Deviation Effect of Each Exogenous Variable 

Definition 2011 2012 2013 2014 2015 2016 2017 2018 2019 
Constant 

No Injury 0.383 -0.555 0.250 
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Minor Injury  -1.181 1.204 0.060 
Non-Incapacitating -0.841 0.880 
Serious Injury -2.194 2.132 0.302 -0.398 

Roadway Characteristics 
Proportion of arterial road 
No Injury 0.370 -0.561 0.311 -0.139 
Minor Injury  0.326 -0.517 0.326 -0.175 0.071 
Non-Incapacitating 0.413 -0.600 0.192 
Serious Injury 0.332 -0.587 0.655 -0.404 -0.140 0.276 
Proportion of divided road 
No Injury 0.343 -0.399 0.058 
Minor Injury  0.234 -0.538 0.320 
Non-Incapacitating -- -- -- -- -- -- -- -- -- 
Serious Injury -- -- -- -- -- -- -- -- -- 
Intersection density 
No Injury -- -0.056 0.062 -0.071 0.060 
Minor Injury  0.033 -0.085 0.036 
Non-Incapacitating -0.014 
Serious Injury -- -- -- -- -- -- -- -- -- 
Average speed 
No Injury -0.032 0.031 -0.020 
Minor Injury  -- -- -0.110 0.105 
Non-Incapacitating -- -- -- -- -- -- -- -- -- 
Serious Injury -- -- -- -- -- -- -- -- -- 

Traffic Characteristics 
AADT 
No Injury 0.081 -0.076 
Minor Injury  0.049 -0.047 
Non-Incapacitating 0.046 0.060 -0.103 -0.003 
Serious Injury 0.035 -0.075 0.074 -0.047 0.036 
Percentage of heavy vehicles 
No Injury -0.036 0.039 
Minor Injury  -0.019 0.020 0.006 -0.004 
Non-Incapacitating -0.007 0.010 
Serious Injury -0.002 0.015 -0.044 0.028 0.048 -0.058 

Land Use Attributes 
Proportion of retail area 
No Injury 1.623 -1.123 -0.518 
Minor Injury  1.709 -1.709 
Non-Incapacitating 1.294 -1.267 
Serious Injury 0.584 -0.651 
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Proportion of residential area 
No Injury 0.107 -0.102 
Minor Injury  0.053 
Non-Incapacitating 0.196 -0.169 
Serious Injury -- -- -- -- -- -- -- -- -- 
Proportion of institutional area 
No Injury -0.472 0.722 
Minor Injury  -- 0.359 -0.335 
Non-Incapacitating -- -- -- -- -- -- -- -- -- 
Serious Injury -- -- -- -- -- -- -- -- -- 

Sociodemographic Characteristics 
TAZ population density 
No Injury 0.104 -0.109 
Minor Injury  0.122 -0.163 0.053 -0.022 
Non-Incapacitating 0.074 -0.075 
Serious Injury 0.088 -0.119 0.044 -0.026 
Proportion of NMT 
No Injury 0.064 -0.061 
Minor Injury  0.056 -0.067 0.021 
Non-Incapacitating 0.046 -0.045 
Serious Injury -- -- -- -- -- -- -- -- -- 

Overdispersion Parameter 
No Injury 0.960 -1.161 0.200 
Minor Injury  0.574 -0.582 
Non-Incapacitating 0.477 -0.480 
Serious Injury 0.699 -0.699 

Unobserved Heterogeneity 
Severity specific 
correlations 0.475 0.583 0.442 

Temporal Interactions 
Non-Incapacitating 0.419 
Serious Injury 0.357 

 

Table 3: MSIPNB Model Results with Net Effect of Each Exogenous Variable 

Definition 2011 2012 2013 2014 2015 2016 2017 2018 2019 
Constant 

No Injury 0.383 0.211 0.288 0.366 0.443 0.521 0.598 0.676 0.753 
Minor Injury  -1.181 -1.159 -1.076 -0.994 -0.912 -0.829 -0.747 -0.665 -0.583 
Non-Incapacitating -0.841 -0.803 -0.764 -0.726 -0.687 -0.648 -0.610 -0.571 -0.533 
Serious Injury -2.194 -2.256 -2.016 -1.776 -1.537 -1.695 -1.854 -2.013 -2.172 

Roadway Characteristics 
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The proportion of arterial road 
No Injury 0.370 0.179 0.299 0.280 0.261 0.241 0.222 0.203 0.183 
Minor Injury  0.326 0.134 0.269 0.229 0.189 0.149 0.180 0.211 0.242 
Non-Incapacitating 0.413 0.225 0.230 0.234 0.238 0.242 0.247 0.251 0.255 
Serious Injury 0.332 0.077 0.477 0.473 0.469 0.324 0.180 0.035 0.167 
The proportion of divided road 
No Injury 0.343 0.287 0.231 0.233 0.236 0.238 0.240 0.242 0.244 
Minor Injury  0.234 0.469 0.166 0.182 0.198 0.215 0.231 0.248 0.264 
Non-Incapacitating -- -- -- -- -- -- -- -- -- 
Serious Injury -- -- -- -- -- -- -- -- -- 
Intersection density 
No Injury -- -0.056 -0.051 -0.046 -0.041 -0.107 -0.113 -0.118 -0.124 
Minor Injury  0.033 -0.019 -0.036 -0.052 -0.069 -0.085 -0.102 -0.118 -0.135 
Non-Incapacitating -0.014 -0.028 -0.042 -0.056 -0.070 -0.083 -0.097 -0.111 -0.125 
Serious Injury -- -- -- -- -- -- -- -- -- 
Average speed 
No Injury -0.032 -0.063 -0.095 -0.126 -0.158 -0.158 -0.159 -0.179 -0.200 
Minor Injury  -- -- -0.110 -0.116 -0.122 -0.127 -0.133 -0.138 -0.144 
Non-Incapacitating -- -- -- -- -- -- -- -- -- 
Serious Injury -- -- -- -- -- -- -- -- -- 

Traffic Characteristics 
AADT 
No Injury 0.081 0.161 0.166 0.171 0.176 0.181 0.186 0.190 0.195 
Minor Injury  0.049 0.098 0.147 0.149 0.151 0.154 0.156 0.158 0.160 
Non-Incapacitating 0.046 0.151 0.154 0.156 0.156 0.155 0.155 0.155 0.155 
Serious Injury 0.035 0.069 0.029 0.063 0.049 0.036 0.022 0.045 0.067 
Percentage of heavy vehicles 
No Injury -0.036 -0.034 -0.031 -0.029 -0.026 -0.024 -0.021 -0.019 -0.016 
Minor Injury  -0.019 -0.019 -0.019 -0.019 -0.013 -0.011 -0.010 -0.008 -0.007 
Non-Incapacitating -0.007 -0.015 -0.022 -0.030 -0.027 -0.024 -0.022 -0.019 -0.017 
Serious Injury -0.002 -0.004 0.009 -0.022 -0.025 -0.028 0.017 0.003 -0.010 

Land Use Attributes 
The proportion of retail area 
No Injury 1.623 2.124 2.107 2.090 2.072 2.055 2.038 2.020 2.003 
Minor Injury  1.709 1.709 1.709 1.709 1.709 1.709 1.709 1.709 1.709 
Non-Incapacitating 1.294 1.322 1.349 1.377 1.404 1.432 1.459 1.487 1.514 
Serious Injury 0.584 1.167 1.099 1.031 0.963 0.895 0.828 0.760 0.692 
The proportion of residential area 
No Injury 0.107 0.214 0.322 0.429 0.536 0.541 0.547 0.552 0.558 
Minor Injury  0.053 0.105 0.158 0.210 0.263 0.315 0.368 0.420 0.473 
Non-Incapacitating 0.196 0.224 0.252 0.280 0.308 0.335 0.363 0.391 0.419 
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Serious Injury -- -- -- -- -- -- -- -- -- 
The proportion of institutional area 
No Injury -0.472 -0.222 0.029 0.279 0.529 0.779 1.030 1.280 1.530 
Minor Injury  -- 0.359 0.718 0.743 0.768 0.793 0.817 0.842 0.867 
Non-Incapacitating -- -- -- -- -- -- -- -- -- 
Serious Injury -- -- -- -- -- -- -- -- -- 

Sociodemographic Characteristics 
TAZ population density 
No Injury 0.104 0.098 0.093 0.088 0.082 0.077 0.071 0.066 0.061 
Minor Injury  0.122 0.082 0.095 0.107 0.098 0.088 0.078 0.069 0.059 
Non-Incapacitating 0.074 0.073 0.073 0.072 0.071 0.071 0.070 0.069 0.068 
Serious Injury 0.088 0.056 0.069 0.081 0.069 0.056 0.043 0.030 0.017 
Proportion of NMT 
No Injury 0.064 0.068 0.071 0.074 0.078 0.081 0.085 0.088 0.091 
Minor Injury  0.056 0.044 0.033 0.021 0.030 0.039 0.048 0.057 0.066 
Non-Incapacitating 0.046 0.046 0.046 0.047 0.047 0.047 0.047 0.048 0.048 
Serious Injury -- -- -- -- -- -- -- -- -- 

Overdispersion Parameter 
No Injury 0.960 0.759 0.759 0.759 0.758 0.758 0.758 0.757 0.757 
Minor Injury  0.574 0.566 0.557 0.549 0.541 0.532 0.524 0.516 0.507 
Non-Incapacitating 0.477 0.475 0.473 0.470 0.468 0.466 0.464 0.461 0.459 
Serious Injury 0.699 0.700 0.700 0.701 0.701 0.702 0.702 0.703 0.703 

Unobserved Heterogeneity 
Severity specific 
correlations 0.475 0.583 0.442 

Temporal Correlations 
Non-Incapacitating  0.419 
Serious Injury 0.357 

 
4.2.1 Roadway Characteristics 
With respect to roadway characteristics, our analysis revealed a consistent positive impact (as 
indicated in  

Table 3) associated with the proportion of arterial road variables, indicating a higher risk of crashes 
in zones with an increased proportion of arterial roads, across all severity levels (Bhowmik et al., 
2021a). Further, the model results also highlight the significant fluctuation of the effect across the 
years, particularly for minor and serious injury counts, indicative of the varying effects of arterials 
roads on the corresponding crash severity risks. Interestingly, for the other two injury severity 
levels, we observe some variability in arterial roads effect until 2014 after which the impact 
becomes relatively stable. This is an example of how the proposed framework allows us to obtain 
a parsimonious specification. Traditional approaches in frequency modeling would have estimated 
nine separate parameters over the 9 years period for each severity level, thus resulting in a total of 
36 parameters. In other words, traditional approaches would strictly assume that the effect will 
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change across every year. In contrast, the proposed model allowed us to reflect variation and 
stability with fewer number of parameters (18 for arterial roads) compared to traditional system.  
 The parameters specific to divided roads indicate that zones with higher proportion of 
divided roads is more likely to experience increased incidence of property damage and minor 
injury crashes. Divided roadways provide barriers from opposing traffic flows and thus allow for 
fast moving traffic. Further, it is common for divided roads to have a complex intersection 
design with extra turning lanes and complex traffic signal design and hence the positive effect is 
intuitive (see (Stigson, 2009) for similar results). In terms of temporal variation, we found the 
impact of the variable significantly varies for both severity levels untill 2014 followed by 
consistent effect in the subsequent years. As is evident from  

Table 3, we observe that intersection density in a zone is negatively associated with less severe 
crashes  (proporerty damage, minor and non-incapaciating injuris) indicating a lower likelihood of 
these crashes in an area with higher number of intersections. It appreas that the impact might not 
be severity specific, rather it is perhaps indicatve of the reduction in overall crashes in intersection-
rich zones. Advanced traffic signals, visible traffic signs, and dedicated turning lanes are some of 
the possible factors resulting in a safer environment (Retting et al., 2011). Further, we also found 
temporal variation in the impact over the years for each severity level. Intersitngly, we found no 
significant fluctuation in the impact of intersection density on non-incapacitating crashes over the 
years. Finally, the parameter associated with average speed limit exhibits a negative impact on 
crash frequency for both property damage and minor injury. At first glance, the effect might seem 
unintuitive, but it could be attributed to better roadway facility conditions and design for high-
speed facilities (Milton & Mannering, 1998). Regarding temporal variation, the results reveal three 
distinct levels of fluctuation in no injury crash counts. On the other hand, for minor injury counts, 
the effect displays variation from the years 2013 to 2014, followed by a stable trend in subsequent 
years. 

 
4.2.2 Traffic Characteristics 
Among the several traffic characteristics considered in the model estimation process only 
Average Annual Daily Traffic (AADT) and heavy vehicle percentage in a zone are found to 
influence zonal level crash risks. Over the 9-year period analyzed in  

Table 3, the model findings highlight a significant positive relationship between AADT and crash 
occurrence across all four severity levels (Satria et al., 2021; Veeramisti et al., 2021). As for 
temporal variations, the results show two levels of fluctuations for less severe crashes while for 
severe crashes, we observe several levels of significant variations for the effect over time. 
Improvements/upgrades in road infrastructure, changes in driving behavior and land use changes 
are some of the possible factors leading to such varying impact of AADT. The results regarding 
heavy vehicle percentage are quite interesting, revealing multiple fluctuations over the years 
across all for crash severity levels. Notably, for serious crashes, we found six distinct variations 
in the effect of heavy vehicles as evidenced in Table 2. In terms of actual impact, our analysis 
consistently demonstrates a negative relationship between heavy vehicle percentage and the 
crash risk across all four severity levels (see  

Table 3). However, an interesting observation arises when we focus on serious crashes. In certain 
instances, we observed a positive association between heavy vehicles and serious crash incidences. 
The result might seem counterintuitive at first. However, heavy vehicles are usually dangerous due 
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to their size and weight while at the same time, their presence on the road might promote cautious 
behavior among drivers, hence the varying impacts is intuitive.  
 
4.2.3 Land Use Attributes 
With respect to land use attributes, we found that TAZ with high retail and residential area will 
likely experience increased incidence of crashes across all severity levels, as indicated by the 
positive impact of these variables in  

Table 3 (Parsa et al., 2020). Regarding temporal variations, both these variables showed a small 
number of fluctuations in the 9-year period analyzed in the study.  Proportion of institutional area 
in a zone is also found to have a significant impact on crash occurrences, particularly for less 
severe crashes (no injury and minor injury). While the impact varies slightly for both severity 
levels over the years (only two times), an intriguing trend is observed focusing on the net impact 
of the variable presented in  

Table 3. In general, the impact is positive indicating a higher likelihood of crashes for the 
corresponding severity with an increased proportion of institutional area in a zone (Bhowmik et 
al., 2019). However, a negative coefficient is observed for no injury crash counts highlighting the 
varying trends of the effect of institutional area in zonal level property damage crashes. Several 
factors like traffic volumes during peak hours, parking and drop-off activities, pedestrian 
movements might explain such two directional impact (Pulugurtha et al., 2013).  
 
4.2.4 Sociodemographic Characteristics 
In terms of sociodemographic characteristics, population density and proportion of non-motorists 
in a zone are found to be positively associated with crash frequency across different crash severity 
levels. Similar results were also found in earlier studies (Cai et al., 2016; Chen & Zhou, 2016). 
Interestingly, starting from 2012, the variable associated with population density remained 
temporally stable for property damage and non-incapacitating injury crashes. However, for minor 
injury and serious injury crashes, we observed notable fluctuations in the impact of population 
density over the years. Similarly, the impact of non-motorists also shows no variation after 2012, 
particularly for property damage and non-incapacitating injury crashes while an additional 
variation is observed in minor crashes from 2015. 
4.2.5 Unobserved Heterogeneity 
The final set of variables in both Table 2 and  

Table 3 correspond to the correlation matrix (unobserved heterogeneity) in the spline indicator 
model with unobserved heterogeneity. As discussed earlier, in the current research effort, two 
types of correlations are tested including: 1) severity specific correlation: common unobserved 
factors affecting the crash severity components within the same year and 2) temporal correlation: 
common unobserved factors affecting over the 9 years period analyzed in the study across different 
severity levels. Both these factors are found to be significant in our analysis (see Table 2) and these 
factors further demonstrate how our proposed unified model provides a parsimonious system with 
reduced complexity. For instance, traditional modeling system could be employed in two ways: 
The first modeling algorithm could be estimated while developing multivariate approaches 
considering four different severity levels models for each year, thus resulting in 9 different severity 
specific correlations while ignoring the temporal correlations. The second modeling approach 
could be employed considering 9 years of data for each severity level, thus proving 4 temporal 
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correlations while ignoring the severity correlations. To that extent, our approach is advantageous 
in two ways: 1) it allows us to capture both severity specific and temporal correlations thus offering 
a more accurate and unbiased parameter estimates; 2) it allows us to identify the number of severity 
specific correlations over the years. For example, in our analysis, we found three distinct levels of 
severity correlations over the 9-year period highlighting that correlation itself might not differ in 
subsequent years. Further, with respect to temporal correlations, the results show two significant 
correlation parameters particular for non-incapacitating and serious crashes.  

 
4.3 Predictive Performance Evaluation 
To demonstrate the applicability of our proposed approach, we conducted a comparison exercise 
by evaluating the prediction performances of the models. Specifically, we evaluated the 
performance of four models: year specific model, year indicator pooled model, spline indicator 
pooled model, and spline indicator pooled model with unobserved heterogeneity by employing 
mean absolute percentage error (MAPE) and root mean square values (RMSE) (Bhowmik et al., 
2018, 2019) for all four severity levels over the 9-year period on a holdout sample (sample size = 
3699 TAZs). A lower MAPE/RMSE indicates better predictive performance, as it represents the 
model's ability to closely approximate the observed data. Table 4 and Table 5 provide the results 
of the MAPE and RMSE measures. The MAPE and RMSE tables also include two composite 
indicators. The first indicator counts the instances in which a model system offers improved results 
across the years. The second indicator presents the average error across the years. 

The MAPE table highlights that our proposed model significantly outperforms the other 
comparable models as illustrated by comparison across the years and the values from count and 
average values. For the MAPE measure, the proposed spline indicator pooled models (with and 
without heterogeneity) outperform the other models. The spline indicator pooled model with 
unobserved heterogeneity provides a superior fit in all 36 possible cases. In the RMSE comparison, 
the proposed spline model with unobserved heterogeneity does not offer as clear an improvement 
as was the case in the MAPE comparison. However, across the different injury severities, spline 
models (with and without unobserved heterogeneity) offer an improved fit 23 times out of 36 
possible cases. We can observe that spline models offer improvement in less severe injury 
categories while performing slightly worse in more severe categories. The reader would note that 
the increase in error is small and is achieved with a substantially lower number of parameters.
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Table 4: Prediction Comparison of Models (MAPE) 

Injury Severity  Years 

2011 

2012 

2013 

2014 

2015 

2016 

2017 

2018 

2019 

Count (# of 
times a 
model 

offered best 
fit across 
the years) 

Average 
across years 

No Injury 

YSNB 1.46 1.35 1.23 1.28 1.29 1.26 1.30 1.36 1.16 0 1.30 
YIPNB 1.47 1.41 1.28 1.28 1.26 1.28 1.29 1.33 1.14 0 1.30 
SIPNB 1.40 1.35 1.31 1.30 1.22 1.29 1.29 1.36 1.16 0 1.30 
MSIPNB 1.18 1.26 1.14 1.15 1.16 1.10 1.12 1.18 1.04 9 1.15 

Minor Injury 

YSNB 0.82 1.06 0.84 0.87 1.02 1.00 0.96 1.05 1.00 0 0.96 
YIPNB 0.82 1.07 0.84 0.89 1.03 1.04 0.98 1.07 0.95 0 0.97 
SIPNB 0.70 0.96 0.80 0.95 1.03 1.09 0.99 0.90 0.84 0 0.92 
MSIPNB 0.68 0.91 0.72 0.78 0.87 0.83 0.82 0.87 0.82 9 0.81 

Non-
Incapacitating 
Injury 

YSNB 0.85 0.76 0.70 0.73 0.75 0.82 0.82 0.84 0.90 0 0.80 
YIPNB 0.84 0.76 0.71 0.72 0.80 0.80 0.81 0.83 0.93 0 0.80 
SIPNB 0.77 0.72 0.70 0.78 0.76 0.80 0.83 0.84 0.91 1 0.79 
MSIPNB 0.76 0.72 0.66 0.67 0.68 0.75 0.73 0.75 0.80 9 0.72 

Serious Injury 

YSNB 0.48 0.51 0.59 0.73 0.73 0.78 0.70 0.63 0.59 0 0.64 
YIPNB 0.48 0.52 0.60 0.71 0.75 0.75 0.72 0.63 0.59 0 0.64 
SIPNB 0.48 0.62 0.59 0.72 0.76 0.76 0.63 0.57 0.58 0 0.63 
MSIPNB 0.41 0.46 0.51 0.61 0.60 0.62 0.60 0.55 0.51 9 0.54 
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Table 5: Prediction Comparison of Models (RMSE) 

Injury 
Severity Year 

2011 

2012 

2013 

2014 

2015 

2016 

2017 

2018 

2019 

Count (# of 
times a 
model 

offered best 
fit across the 

years) 

Average 
across years 

No Injury 

YSNB 23.20 25.80 26.70 30.38 30.52 28.75 31.62 33.51 33.86 0 29.37 
YIPNB 23.02 24.45 26.72 28.21 30.14 28.71 33.17 34.87 33.68 1 29.22 
SIPNB 22.92 26.18 27.23 28.48 30.06 29.40 31.98 33.31 33.51 1 29.23 
MSIPNB 23.17 24.64 25.81 27.48 29.01 28.29 30.48 32.29 32.40 7 28.17 

Minor Injury 

YSNB 4.63 5.87 5.62 6.34 6.74 6.83 7.25 7.90 8.39 2 6.62 
YIPNB 4.60 5.45 5.68 6.31 6.67 6.88 7.19 8.01 8.41 3 6.58 
SIPNB 4.82 5.49 5.75 6.13 6.81 6.88 7.17 7.77 8.32 3 6.57 
MSIPNB 4.75 5.60 6.06 6.31 6.89 6.96 7.21 7.80 8.16 1 6.64 

Non-
Incapacitating 
Injury 

YSNB 3.66 3.28 3.37 3.51 3.78 3.93 3.80 4.18 4.54 3 3.78 
YIPNB 3.70 3.25 3.37 3.50 3.80 3.97 3.84 4.22 4.47 1 3.79 
SIPNB 3.68 3.24 3.36 3.52 3.75 3.96 3.84 4.19 4.49 2 3.78 
MSIPNB 3.79 3.23 3.43 3.57 3.75 3.99 3.83 4.14 4.46 4 3.80 

Serious 
Injury 

YSNB 1.15 1.32 1.63 2.43 2.73 2.27 1.99 1.75 1.58 5 1.87 
YIPNB 1.15 1.33 1.63 2.43 2.71 2.27 1.96 1.76 1.58 6 1.87 
SIPNB 1.15 1.33 1.63 2.42 2.74 2.27 1.98 1.74 1.59 5 1.87 
MSIPNB 1.21 1.37 1.73 2.54 2.93 2.35 2.00 1.78 1.61 0 1.95 
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Finally, incorporating unobserved heterogeneity within spline model improves the prediction 
further, particularly for property damage and minor injury crashes while the prediction 
performance dropped slightly for non-incapacitating injury and serious injury crashes. The reader 
would note that this small drop in prediction performance is not unexpected. In multivariate model 
development, in the presence of a very small number of variables, adding an independent variable 
might improve the model for all dependent variables. However, adding a small number of 
unobserved heterogeneity variables (3-4) in a model with over 100 variables, it is not surprising 
that there are some trade-offs in predictive performance across dependent variables 

The traditional year specific framework (YSNB) and the spline model with unobserved 
effects are also compared by conducting a correct classification analysis. Using observed crash 
counts for each severity level, the holdout sample zones (3699) were divided into four quartiles 
based on the crash numbers. Similarly, using the predicted counts from the YSNB and MSIPNB 
models, we created the four quartiles again, and the percentage of correctly classified TAZs within 
each group was calculated. The error margin for prediction window is extended to 20% of the 
mean. Suppose if the range is [20-30], we use the 20% of the mean value (5) and build a 
corresponding crash bin as [15-35]. If prediction from the model for [20-30] falls within [15-35] 
we label it as correct and false otherwise.  
 

 
 
Figure 3. Classification Comparison for Two Models (YSNB and MSIPNB) 
  

It is evident from Figure 3 that the proposed framework outperformed the traditional model 
in 15 out of 20 instances. Further, as the parameter variation trends are estimated, the proposed 
spline model has the potential to forecast crashes for future years. We tested the model for 
predicting crash frequencies across the different severity levels for the year 2021. The spline model 
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with unobserved heterogeneity was able to predict crash frequency class around 55-78% on 
average across different severity levels of crashes. 
 

5 CONCLUSION 
Multivariate frameworks effectively handle the influence of observed and unobserved factors 
across multiple dependent variables for a single instance of data. However, the recent pooled 
multivariate crash severity prediction models are unable to identify specific parameters exhibiting 
statistically discernible differences over time and lack a process for future model application. The 
current research proposed a novel approach, labelled the mixed spline indicator pooled model, that 
offered a significant enhancement of current approaches to capture temporal instability. The 
proposed entails carefully creating additional independent variables that allow us to measure 
parameter slope changes over time and can be easily integrated into existing methodological 
frameworks. The modeling exercise is conducted using the Traffic Analysis Zone (TAZ) level 
crash records from Central Florida for the years 2011 to 2019 considering a comprehensive set of 
exogenous variables.  
 In the empirical analysis, we estimated a series of models including the Year Specific 
Negative Binomial model (YSNB), the year indicator pooled negative binomial model (YIPNB), 
and the spline indicator pooled negative binomial model (SIPNB), to address the dimensionality 
challenges of 36 dependent variables representing different severity levels over nine years. The 
comparison exercise revealed the superior performance of the pooled models, which demonstrated 
significantly lower Bayesian Information Criterion (BIC) values compared to the traditional year 
specific NB models. Among the pooled approaches, the SIPNB model exhibited considerable 
enhancement in data fit relative to the YIPNB model, highlighting the benefits of the additional 
flexibility introduced by the spline framework. Notably, the best-performing spline model 
incorporated unobserved heterogeneity along two dimensions: severity level correlation across 
each year and temporal correlations across severity levels. The prediction performances of four 
models were also assessed. The results demonstrated that the proposed spline model consistently 
outperformed its counterparts in terms of predictive accuracy across all dimensions. Moreover, a 
correct classification analysis revealed that the proposed framework consistently outperformed the 
traditional year specific model in the majority of the instances. The findings support the 
applicability and potential of the spline model in forecasting crashes for future years, with the 
model achieving an average prediction accuracy of around 55-78% across different severity levels 
of crashes in the year 2021. Overall, our research highlights the effectiveness of the mixed spline 
indicator pooled model in providing a parsimonious specification with improved data fit. By 
addressing the limitations of previous approaches, our proposed model holds promise for 
advancing the analysis of data from multiple instances, identifying variation in parameter effects 
and improving the accuracy of temporal predictions.  

To be sure, the study is not without limitations. In our analysis, we considered all motorized 
vehicle crashes in the study region and classified them by severity level. The approach implicitly 
ignores the impact of crash type on crash frequency and severity. It might be interesting to consider 
an approach that accommodates for crash type within the modeling framework (see an example 
model system from Bhowmik et al., 2021b). Of course, such a consideration would rapidly 
increase the number of dependent variables (from 36 in our study to 36 * # of crash types) and 
would be significantly more challenging.  
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Appendix 
 
Table A1: Year Specific Negative Binomial Model (YSNB) Results 

Definition 2011 2012 2013 2014 2015 2016 2017 2018 2019 
Constant 

No Injury 0.404 0.400 0.388 0.542 0.566 0.759 0.786 0.823 0.949 
Minor Injury  -1.200 -1.260 -1.362 -1.089 -0.819 -0.924 -0.767 -0.619 -0.643 
Non-Incapacitating -0.716 -1.111 -1.343 -1.323 -0.887 -0.949 -0.883 -1.255 -0.906 
Serious Injury -2.181 -2.337 -2.338 -1.993 -1.817 -1.572 -1.802 -2.237 -2.391 

Roadway Characteristics 
The proportion of arterial road 
No Injury 0.494 0.160 0.503 0.389 0.353 0.162 0.169 0.216 0.237 
Minor Injury  0.423 0.186 0.474 0.305 0.303 0.251 0.190 0.243 0.279 
Non-Incapacitating 0.540 0.160 0.412 0.363 0.460 0.267 0.238 0.215 0.207 
Serious Injury 0.555 -- 0.722 0.546 0.625 0.385 0.237 0.165 0.280 
The proportion of divided road 
No Injury 0.338 0.463 -- -- -- 0.344 0.337 0.306 0.277 
Minor Injury  0.427 0.545 -- 0.183 0.182 -- 0.254 0.357 0.348 
Non-Incapacitating -- -- -- -- -- -- -- -- -- 

Serious Injury -- -- -- -- -- -- -- -- -- 
Intersection density 
No Injury -- -- -0.094 -0.079 -0.102 -0.168 -0.177 -0.145 -0.133 
Minor Injury  -- -- -0.094 -0.071 -0.131 -0.176 -0.168 -0.173 -0.139 
Non-Incapacitating -- -- -0.068 -0.079 -0.074 -0.127 -0.131 -0.102 -0.111 
Serious Injury -- -- -- -- -- -- -- -- -- 
Average speed 
No Injury -- -- -0.124 -0.150 -0.213 -0.152 -0.196 -0.168 -0.209 
Minor Injury  -- -- -0.130 -0.107 -0.244 -0.137 -0.221 -0.251 -0.204 
Non-Incapacitating -- -- -- -- -- -- -- -- -- 
Serious Injury -- -- -- -- -- -- -- -- -- 

Traffic Characteristics 
AADT 
No Injury 0.089 0.112 0.203 0.210 0.221 0.197 0.212 0.188 0.186 
Minor Injury  0.089 0.123 0.240 0.210 0.224 0.233 0.229 0.220 0.200 
Non-Incapacitating 0.066 0.133 0.171 0.197 0.135 0.177 0.158 0.162 0.155 
Serious Injury 0.068 0.136 0.109 0.122 0.124 0.101 0.094 0.122 0.142 
Percentage of heavy vehicles 
No Injury -0.042 -0.037 -0.044 -0.045 -0.032 -0.039 -0.022 -0.014 -0.011 
Minor Injury  -0.038 -0.022 -0.047 -0.049 -0.022 -0.036 -0.013 -- -- 
Non-Incapacitating -0.019 -0.025 -0.03 -0.042 -0.033 -0.044 -0.024 -- -0.017 
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Serious Injury -0.016 -0.039 -0.018 -0.049 -0.054 -0.047 -- -- -0.015 
Land Use Attributes 

The proportion of retail area 
No Injury 1.657 2.134 2.038 1.969 2.224 2.010 1.926 1.931 2.015 
Minor Injury  1.505 1.729 1.602 1.568 1.779 1.782 1.587 1.592 1.617 
Non-Incapacitating 0.985 1.418 1.371 1.122 1.359 1.164 1.223 1.412 1.247 
Serious Injury 0.544 0.955 1.079 0.984 0.980 0.756 0.743 0.972 0.690 
The proportion of residential area 
No Injury -- -- 0.274 -- 0.518 0.528 0.446 0.392 0.494 
Minor Injury  0.268 -- 0.348 -- 0.345 0.459 0.315 0.298 0.312 
Non-Incapacitating -- 0.250 0.222 -- 0.279 0.212 0.252 0.377 -- 
Serious Injury -- -- -- -- -- -- -- -- -- 
The proportion of institutional area 
No Injury -- -- -- -- 0.926 1.084 1.034 0.989 1.132 
Minor Injury  -- -- 0.951 -- 1.146 1.119 0.746 0.788 1.115 
Non-Incapacitating -- -- -- -- -- -- -- -- -- 
Serious Injury -- -- -- -- -- -- -- -- -- 

Sociodemographic Characteristics 
TAZ population density 
No Injury 0.117 0.096 0.101 0.124 0.088 0.064 0.072 0.070 0.056 
Minor Injury  0.117 0.091 0.083 0.120 0.085 0.078 0.085 0.075 0.067 
Non-Incapacitating 0.097 0.059 0.077 0.092 0.075 0.068 0.072 0.058 0.082 
Serious Injury 0.102 0.063 0.064 0.098 0.077 0.069 0.051 0.047 0.043 
Proportion of NMT 
No Injury 0.079 0.078 0.075 0.045 0.075 0.094 0.104 0.124 0.142 
Minor Injury  0.080 0.067 0.067 -- 0.065 0.070 0.105 0.111 0.138 
Non-Incapacitating 0.055 0.046 -- -- 0.064 0.062 -- 0.091 0.066 
Serious Injury -- -- -- -- -- -- -- -- -- 

Overdispersion Parameter 
No Injury 0.960 0.755 0.737 0.742 0.760 0.737 0.753 0.790 0.743 
Minor Injury  0.555 0.646 0.493 0.516 0.563 0.549 0.485 0.526 0.516 
Non-Incapacitating 0.486 0.481 0.460 0.497 0.543 0.520 0.465 0.465 0.464 
Serious Injury 0.332 0.585 0.632 0.900 0.933 0.896 0.671 0.559 0.483 
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Table A2: Year Indicator Pooled Negative Binomial Model (YIPNB) Results 
 

Definition 2011 2012 2013 2014 2015 2016 2017 2018 2019 
Constant 

No Injury 0.606 -- -- -- -- -- -- -- -- 
Minor Injury  -1.314 -- -- -- 0.595 0.627 
Non-Incapacitating -1.003 -0.659 -0.907 -1.286 -- -0.783 -0.478 -0.620 -- 
Serious Injury -2.254 -- -- -- -- 0.799 -- -- 

Roadway Characteristics 
The proportion of arterial road 
No Injury 0.417 -0.301 -- -- -0.172 -0.239 -0.196 
Minor Injury  0.329 -0.151 -- -- -- -0.209 -0.157 -- -- 
Non-Incapacitating 0.289 -- -- -- -- -- -- -- -- 
Serious Injury 0.533 -0.401 0.210 -- -- -- -0.314 
The proportion of divided road 
No Injury 0.280 -- -- -- -- -- -- -- -- 
Minor Injury  0.363 -- -0.196 -- -- -- -- 
Non-Incapacitating -- -- -- -- -- -- -- -- -- 

Serious Injury -- -- -- -- -- -- -- -- -- 
Intersection density 
No Injury -- -0.074 -0.169 -0.132 
Minor Injury  0.054 -0.139 -0.202 
Non-Incapacitating -- -- -0.064 -0.098 -0.143 -0.124 -0.097 -0.137 
Serious Injury -- -- -- -- -- -- -- -- -- 
Average speed 
No Injury -0.110 -- -- -- -0.084 -- -- -- -- 
Minor Injury  -- -- -- -0.110 -0.197 -0.180 -0.221 
Non-Incapacitating -- -- -- -- -- -- -- -- -- 
Serious Injury -- -- -- -- -- -- -- -- -- 

Traffic Characteristics 
AADT 
No Injury 0.108 0.052 0.101 0.091 0.074 
Minor Injury  0.088 0.075 0.099 0.124 
Non-Incapacitating 0.097 0.064 0.099 0.145 0.018 0.110 0.078 0.044 
Serious Injury 0.075 0.049 0.026 0.074 0.086 -- -- 0.053 
Percentage of heavy vehicles 
No Injury -0.040 -- -- -- -- -- 0.017 0.028 
Minor Injury  -0.033 -- -0.019 -- -- -- -0.019 
Non-Incapacitating -0.028 -- -- -- -- -- -- 0.017 -- 
Serious Injury -0.015 -0.025 -- -0.028 -- 0.012 -- 
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Land Use Attributes 
The proportion of retail area 
No Injury 2.043 -- -- -- -- -- -- -- -- 
Minor Injury  1.663 -- -- -- -- -- -- -- -- 
Non-Incapacitating 1.375 -- -- -- -- -- -- -- -- 
Serious Injury 0.858 -- -- -- -- -- -- -- -- 
The proportion of residential area 
No Injury 0.329 -- -- -- -- 0.241 -- -- 0.221 
Minor Injury  0.315 -- -- -- -- -- -- -- -- 
Non-Incapacitating 0.287 -- -- -- -- -- -- -- -- 
Serious Injury -- -- -- -- -- -- -- -- -- 
The proportion of institutional area 
No Injury -0.427 -- -- 0.961 1.240 1.570 1.367 1.665 
Minor Injury  -- -- 0.952 -- 1.102 0.692 1.193 
Non-Incapacitating -- -- -- -- -- -- -- -- -- 
Serious Injury -- -- -- -- -- -- -- -- -- 

Sociodemographic Characteristics 
TAZ population density 
No Injury 0.088 -- -- -- -- -0.021 -- -- -0.023 
Minor Injury  0.114 -0.038 -- -0.037 
Non-Incapacitating 0.078 -0.022 -- -- -- -- -- -- -- 
Serious Injury 0.096 -0.033 -- -- -0.022 -0.053 
Proportion of NMT 
No Injury 0.089 -- -- -- -- -- -- -- -- 
Minor Injury  0.087 -- -- -0.055 -- -- -- -- -- 
Non-Incapacitating 0.057 -- -- -- -- -- -- -- -- 
Serious Injury -- -- -- -- -- -- -- -- -- 

Overdispersion Parameter 
No Injury 0.970 -0.173 -0.220 -0.176 -0.221 
Minor Injury  0.527 0.124 -- -- -- -- -- -- -- 
Non-Incapacitating 0.468 -- -- -- -- -- -- -- -- 
Serious Injury 0.339 0.276 0.572 0.341 0.219 0.150 
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Table A3: Spline Indicator Pooled Negative Binomial Model (SIPNB) Results 
 

Definition 2011 2012 2013 2014 2015 2016 2017 2018 2019 
Constant 

No Injury 0.486 -0.740 0.363 
Minor Injury  -1.213 1.111 0.209 
Non-Incapacitating -0.911 0.965 
Serious Injury -2.199 1.886 0.538 -0.463 

Roadway Characteristics 
The proportion of arterial road 
No Injury 0.469 -0.784 0.547 -0.269 
Minor Injury  0.489 -0.791 0.510 -0.272 0.081 
Non-Incapacitating 0.548 -0.825 0.272 
Serious Injury 0.537 -0.914 0.845 -0.477 -0.154 0.288 
The proportion of divided road 
No Injury 0.428 -0.539 0.130 
Minor Injury  0.302 -0.793 0.532 
Non-Incapacitating -- -- -- -- -- -- -- -- -- 

Serious Injury -- -- -- -- -- -- -- -- -- 
Intersection density 
No Injury -- -0.083 0.085 -0.067 0.058 
Minor Injury  0.055 -0.172 0.099 
Non-Incapacitating -0.017 
Serious Injury -- -- -- -- -- -- -- -- -- 
Average speed 
No Injury -0.033 0.032 -0.028 
Minor Injury  -- -- -0.155 0.144 
Non-Incapacitating -- -- -- -- -- -- -- -- -- 
Serious Injury -- -- -- -- -- -- -- -- -- 

Traffic Characteristics 
AADT 
No Injury 0.089 -0.086 
Minor Injury  0.076 -0.079 
Non-Incapacitating 0.068 0.042 -0.104 -0.009 
Serious Injury 0.072 -0.110 0.065 -0.041 0.036 
Percentage of heavy vehicles 
No Injury -0.044 0.048 
Minor Injury  -0.031 0.027 0.020 -0.011 
Non-Incapacitating -0.011 0.017 
Serious Injury -0.018 0.035 -0.050 0.033 0.051 -0.059 
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Land Use Attributes 
The proportion of retail area 
No Injury 1.677 -1.104 -0.621 
Minor Injury  1.590 -1.580 
Non-Incapacitating 1.300 -1.281 
Serious Injury 0.513 -0.552 
The proportion of residential area 
No Injury 0.097 -0.112 
Minor Injury  0.048 
Non-Incapacitating 0.252 -0.245 
Serious Injury -- -- -- -- -- -- -- -- -- 
The proportion of institutional area 
No Injury -0.564 0.828 
Minor Injury  -- 0.379 -0.340 
Non-Incapacitating -- -- -- -- -- -- -- -- -- 
Serious Injury -- -- -- -- -- -- -- -- -- 

Sociodemographic Characteristics 
TAZ population density 
No Injury 0.108 -0.114 
Minor Injury  0.131 -0.185 0.069 -0.025 
Non-Incapacitating 0.075 -0.075 
Serious Injury 0.102 -0.147 0.060 -0.026 
Proportion of NMT 
No Injury 0.060 -0.053 
Minor Injury  0.085 -0.100 0.034 
Non-Incapacitating 0.051 -0.049 
Serious Injury -- -- -- -- -- -- -- -- -- 

Overdispersion Parameter 
No Injury 0.960 -1.161 0.200 
Minor Injury  0.574 -0.582 
Non-Incapacitating 0.477 -0.480 
Serious Injury 0.699 -0.699 
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Note summarizing the number of model estimations 
 
In this section, we briefly summarize the number of model estimations and corresponding 

pair-wise tests required in the Alnawmasi and Mannering, 2023 and Dzinyela et al., 2024 approach 
for temporal stability analysis.  

Consider data is compiled for N years. For each variable, across the years, the number of 
variable impacts is anywhere between 0 (insignificant) and N (significant for every year). 
models. For example, for variable AADT the number of models to be tested for each dependent 
variable are as follows: 

AADT has no impact across all years and/or AADT different across all years (N) [unconstrained 
models by year] NC1 

AADT – different for N-2 years and same for two years [the two common years can be 
anywhere] NC2 

AADT – different for N-3 years and same for three years NC3 

… 

AADT - same across all years – 1 model [Constrained model] NCN 

So, the total number of models to be estimated is NC1+ NC2    …. NCN= 2N - 1 

If N = 10; the number of model estimations for one independent variable is 1023. Now, 
one could argue that, with multiple independent variables and dependent variables (4 in our case), 
the number will definitely be higher.  
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