8 research outputs found
Rhodamine-linked pyridyl thiourea as a receptor for selective recognition of F<sup>–</sup>, Al<sup>3+</sup> and Ag<sup>+</sup> under different conditions
<div><p>A new rhodamine-labelled pyridyl thiourea-based compound <b>1</b> has been designed and synthesised. While the receptor selectively recognises F<sup>–</sup> and Al<sup>3+</sup> ions in CH<sub>3</sub>CN, Al<sup>3+</sup> and Ag<sup>+</sup> ions are selectively screened from other cations in CH<sub>3</sub>CN/water (4/1, v/v; 10 μM Tris–HCl buffer, pH 6.8) by observing different emission characteristics and colour changes. While Ag<sup>+</sup> is sensed through an increase in emission at 416 nm, Al<sup>3+</sup> is detected by a ratiometric change in emission of <b>1</b> with a band at 585 nm. The receptor shows <i>in vitro</i> detection of both the ions in human cervical cancer (HeLa) cells.</p></div
Rechargeable Sodium-Ion Battery: High-Capacity Ammonium Vanadate Cathode with Enhanced Stability at High Rate
Sodium-ion
battery (NIB) cathode performance based on ammonium
vanadate is demonstrated here as having high capacity, long cycle
life and good rate capability. The simple preparation process and
morphology study enable us to explore this electrode as suitable NIB
cathode. Furthermore, density functional theory (DFT) calculation
is envisioned for the NH<sub>4</sub>V<sub>4</sub>O<sub>10</sub> cathode,
and three possible sodium arrangements in the structure are depicted
for the first time. Relevant NIB-related properties such as average
voltage, lattice constants, and atomic coordinates have been derived,
and the estimated values are in good agreement with the current experimental
values. A screening study shows ammonium vanadate electrodes prepared
on carbon coat onto Al-current collector exhibits a better electrochemical
performance toward sodium, with a sustained reversible capacity and
outstanding rate capability. With the current cathode with nanobelt
morphology, a reversible capacity of 190 mAh g<sup>–1</sup> is attained at a charging rate of 200 mA g<sup>–1</sup>,
and a stable capacity of above 120 mAh g<sup>–1</sup> is retained
for an extended 50 cycles tested at 1000 mA g<sup>–1</sup> without
the addition of any expensive electrolyte additive
Data_Sheet_1_Potent Bioactive Compounds From Seaweed Waste to Combat Cancer Through Bioinformatics Investigation.CSV
The seaweed industries generate considerable amounts of waste that must be appropriately managed. This biomass from marine waste is a rich source of high-value bioactive compounds. Thus, this waste can be adequately utilized by recovering the compounds for therapeutic purposes. Histone deacetylases (HDACs) are key epigenetic regulators established as one of the most promising targets for cancer chemotherapy. In the present study, our objective is to find the HDAC 2 inhibitor. We performed top-down in silico methodologies to identify potential HDAC 2 inhibitors by screening compounds from edible seaweed waste. One hundred ninety-three (n = 193) compounds from edible seaweeds were initially screened and filtered with drug-likeness properties using SwissADME. After that, the filtered compounds were followed to further evaluate their binding potential with HDAC 2 protein by using Glide high throughput virtual screening (HTVS), standard precision (SP), extra precision (XP), and quantum polarized ligand docking (QPLD). One compound with higher negative binding energy was selected, and to validate the binding mode and stability of the complex, molecular dynamics (MD) simulations using Desmond were performed. The complex-binding free energy calculation was performed using molecular mechanics-generalized born surface area (MM-GBSA) calculation. Post-MD simulation analyses such as PCA, DCCM, and free energy landscape were also evaluated. The quantum mechanical and electronic properties of the potential bioactive compounds were assessed using the density functional theory (DFT) study. These findings support the use of marine resources like edible seaweed waste for cancer drug development by using its bioactive compounds. The obtained results encourage further in vitro and in vivo research. Our in silico findings show that the compound has a high binding affinity for the catalytic site of the HDAC 2 protein and has drug-likeness properties, and can be utilized in drug development against cancer.</p
Data_Sheet_3_Potent Bioactive Compounds From Seaweed Waste to Combat Cancer Through Bioinformatics Investigation.CSV
The seaweed industries generate considerable amounts of waste that must be appropriately managed. This biomass from marine waste is a rich source of high-value bioactive compounds. Thus, this waste can be adequately utilized by recovering the compounds for therapeutic purposes. Histone deacetylases (HDACs) are key epigenetic regulators established as one of the most promising targets for cancer chemotherapy. In the present study, our objective is to find the HDAC 2 inhibitor. We performed top-down in silico methodologies to identify potential HDAC 2 inhibitors by screening compounds from edible seaweed waste. One hundred ninety-three (n = 193) compounds from edible seaweeds were initially screened and filtered with drug-likeness properties using SwissADME. After that, the filtered compounds were followed to further evaluate their binding potential with HDAC 2 protein by using Glide high throughput virtual screening (HTVS), standard precision (SP), extra precision (XP), and quantum polarized ligand docking (QPLD). One compound with higher negative binding energy was selected, and to validate the binding mode and stability of the complex, molecular dynamics (MD) simulations using Desmond were performed. The complex-binding free energy calculation was performed using molecular mechanics-generalized born surface area (MM-GBSA) calculation. Post-MD simulation analyses such as PCA, DCCM, and free energy landscape were also evaluated. The quantum mechanical and electronic properties of the potential bioactive compounds were assessed using the density functional theory (DFT) study. These findings support the use of marine resources like edible seaweed waste for cancer drug development by using its bioactive compounds. The obtained results encourage further in vitro and in vivo research. Our in silico findings show that the compound has a high binding affinity for the catalytic site of the HDAC 2 protein and has drug-likeness properties, and can be utilized in drug development against cancer.</p
Data_Sheet_2_Potent Bioactive Compounds From Seaweed Waste to Combat Cancer Through Bioinformatics Investigation.CSV
The seaweed industries generate considerable amounts of waste that must be appropriately managed. This biomass from marine waste is a rich source of high-value bioactive compounds. Thus, this waste can be adequately utilized by recovering the compounds for therapeutic purposes. Histone deacetylases (HDACs) are key epigenetic regulators established as one of the most promising targets for cancer chemotherapy. In the present study, our objective is to find the HDAC 2 inhibitor. We performed top-down in silico methodologies to identify potential HDAC 2 inhibitors by screening compounds from edible seaweed waste. One hundred ninety-three (n = 193) compounds from edible seaweeds were initially screened and filtered with drug-likeness properties using SwissADME. After that, the filtered compounds were followed to further evaluate their binding potential with HDAC 2 protein by using Glide high throughput virtual screening (HTVS), standard precision (SP), extra precision (XP), and quantum polarized ligand docking (QPLD). One compound with higher negative binding energy was selected, and to validate the binding mode and stability of the complex, molecular dynamics (MD) simulations using Desmond were performed. The complex-binding free energy calculation was performed using molecular mechanics-generalized born surface area (MM-GBSA) calculation. Post-MD simulation analyses such as PCA, DCCM, and free energy landscape were also evaluated. The quantum mechanical and electronic properties of the potential bioactive compounds were assessed using the density functional theory (DFT) study. These findings support the use of marine resources like edible seaweed waste for cancer drug development by using its bioactive compounds. The obtained results encourage further in vitro and in vivo research. Our in silico findings show that the compound has a high binding affinity for the catalytic site of the HDAC 2 protein and has drug-likeness properties, and can be utilized in drug development against cancer.</p
Global, regional, and national age-sex-specific burden of diarrhoeal diseases, their risk factors, and aetiologies, 1990–2021, for 204 countries and territories: a systematic analysis for the Global Burden of Disease Study 2021
Background: Diarrhoeal diseases claim more than 1 million lives annually and are a leading cause of death in children younger than 5 years. Comprehensive global estimates of the diarrhoeal disease burden for specific age groups of children younger than 5 years are scarce, and the burden in children older than 5 years and in adults is also understudied. We used results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2021 to assess the burden of, and trends in, diarrhoeal diseases overall and attributable to 13 pathogens, as well as the contributions of associated risk factors, in children and adults in 204 countries and territories from 1990 to 2021. Methods: We used the Cause of Death Ensemble modelling strategy to analyse vital registration data, verbal autopsy data, mortality surveillance data, and minimally invasive tissue sampling data. We used DisMod-MR (version 2.1), a Bayesian meta-regression tool, to analyse incidence and prevalence data identified via systematic reviews, population-based surveys, and claims and inpatient data. We calculated diarrhoeal disability-adjusted life-years (DALYs) as the sum of years of life lost (YLLs) and years lived with disability (YLDs) for each location, year, and age–sex group. For aetiology estimation, we used a counterfactual approach to quantify population-attributable fractions (PAFs). Additionally, we estimated the diarrhoeal disease burden attributable to the independent effects of risk factors using the comparative risk assessment framework. Findings: In 2021, diarrhoeal diseases caused an estimated 1·17 million (95% uncertainty interval 0·793–1·62) deaths globally, representing a 60·3% (50·6–69·0) decrease since 1990 (2·93 million [2·31–3·73] deaths). The most pronounced decline was in children younger than 5 years, with a 79·2% (72·4–84·6) decrease in diarrhoeal deaths. Global YLLs also decreased substantially, from 186 million (147–221) in 1990 to 51·4 million (39·9–65·9) in 2021. In 2021, an estimated 59·0 million (47·2–73·2) DALYs were attributable to diarrhoeal diseases globally, with 30·9 million (23·1–42·0) of these affecting children younger than 5 years. Leading risk factors for diarrhoeal DALYs included low birthweight and short gestation in the neonatal age groups, child growth failure in children aged between 1–5 months and 2–4 years, and unsafe water and poor sanitation in older children and adults. We estimated that the removal of all evaluated diarrhoeal risk factors would reduce global DALYs from 59·0 million (47·2–73·2) to 4·99 million (1·99–10·0) among all ages combined. Globally in 2021, rotavirus was the predominant cause of diarrhoeal deaths across all ages, with a PAF of 15·2% (11·4–20·1), followed by norovirus at 10·6% (2·3–17·0) and Cryptosporidium spp at 10·2% (7·03–14·3). In children younger than 5 years, the fatal PAF of rotavirus was 35·2% (28·7–43·0), followed by Shigella spp at 24·0% (15·2–37·9) and adenovirus at 23·8% (14·8–36·3). Other pathogens with a fatal PAF greater than 10% in children younger than 5 years included Cryptosporidium spp, typical enteropathogenic Escherichia coli, and enterotoxigenic E coli producing heat-stable toxin. Interpretation: The substantial decline in the global burden of diarrhoeal diseases since 1990, particularly in children younger than 5 years, supports the effectiveness of health interventions such as oral rehydration therapy, enhanced water, sanitation, and hygiene (WASH) infrastructure, and the introduction and scale-up of rotavirus vaccination. Targeted interventions and preventive measures against key risk factors and pathogens could further reduce this burden. Continued investment in the development and distribution of vaccines for leading pathogens remains crucial. Funding: Bill & Melinda Gates Foundation.</p
Global Burden of Cardiovascular Diseases and Risks, 1990-2022
No description supplied</p
Global fertility in 204 countries and territories, 1950–2021, with forecasts to 2100: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
BackgroundAccurate assessments of current and future fertility—including overall trends and changing population age structures across countries and regions—are essential to help plan for the profound social, economic, environmental, and geopolitical challenges that these changes will bring. Estimates and projections of fertility are necessary to inform policies involving resource and health-care needs, labour supply, education, gender equality, and family planning and support. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 produced up-to-date and comprehensive demographic assessments of key fertility indicators at global, regional, and national levels from 1950 to 2021 and forecast fertility metrics to 2100 based on a reference scenario and key policy-dependent alternative scenarios.MethodsTo estimate fertility indicators from 1950 to 2021, mixed-effects regression models and spatiotemporal Gaussian process regression were used to synthesise data from 8709 country-years of vital and sample registrations, 1455 surveys and censuses, and 150 other sources, and to generate age-specific fertility rates (ASFRs) for 5-year age groups from age 10 years to 54 years. ASFRs were summed across age groups to produce estimates of total fertility rate (TFR). Livebirths were calculated by multiplying ASFR and age-specific female population, then summing across ages 10–54 years. To forecast future fertility up to 2100, our Institute for Health Metrics and Evaluation (IHME) forecasting model was based on projections of completed cohort fertility at age 50 years (CCF50; the average number of children born over time to females from a specified birth cohort), which yields more stable and accurate measures of fertility than directly modelling TFR. CCF50 was modelled using an ensemble approach in which three sub-models (with two, three, and four covariates variously consisting of female educational attainment, contraceptive met need, population density in habitable areas, and under-5 mortality) were given equal weights, and analyses were conducted utilising the MR-BRT (meta-regression—Bayesian, regularised, trimmed) tool. To capture time-series trends in CCF50 not explained by these covariates, we used a first-order autoregressive model on the residual term. CCF50 as a proportion of each 5-year ASFR was predicted using a linear mixed-effects model with fixed-effects covariates (female educational attainment and contraceptive met need) and random intercepts for geographical regions. Projected TFRs were then computed for each calendar year as the sum of single-year ASFRs across age groups. The reference forecast is our estimate of the most likely fertility future given the model, past fertility, forecasts of covariates, and historical relationships between covariates and fertility. We additionally produced forecasts for multiple alternative scenarios in each location: the UN Sustainable Development Goal (SDG) for education is achieved by 2030; the contraceptive met need SDG is achieved by 2030; pro-natal policies are enacted to create supportive environments for those who give birth; and the previous three scenarios combined. Uncertainty from past data inputs and model estimation was propagated throughout analyses by taking 1000 draws for past and present fertility estimates and 500 draws for future forecasts from the estimated distribution for each metric, with 95% uncertainty intervals (UIs) given as the 2·5 and 97·5 percentiles of the draws. To evaluate the forecasting performance of our model and others, we computed skill values—a metric assessing gain in forecasting accuracy—by comparing predicted versus observed ASFRs from the past 15 years (2007–21). A positive skill metric indicates that the model being evaluated performs better than the baseline model (here, a simplified model holding 2007 values constant in the future), and a negative metric indicates that the evaluated model performs worse than baseline.FindingsDuring the period from 1950 to 2021, global TFR more than halved, from 4·84 (95% UI 4·63–5·06) to 2·23 (2·09–2·38). Global annual livebirths peaked in 2016 at 142 million (95% UI 137–147), declining to 129 million (121–138) in 2021. Fertility rates declined in all countries and territories since 1950, with TFR remaining above 2·1—canonically considered replacement-level fertility—in 94 (46·1%) countries and territories in 2021. This included 44 of 46 countries in sub-Saharan Africa, which was the super-region with the largest share of livebirths in 2021 (29·2% [28·7–29·6]). 47 countries and territories in which lowest estimated fertility between 1950 and 2021 was below replacement experienced one or more subsequent years with higher fertility; only three of these locations rebounded above replacement levels. Future fertility rates were projected to continue to decline worldwide, reaching a global TFR of 1·83 (1·59–2·08) in 2050 and 1·59 (1·25–1·96) in 2100 under the reference scenario. The number of countries and territories with fertility rates remaining above replacement was forecast to be 49 (24·0%) in 2050 and only six (2·9%) in 2100, with three of these six countries included in the 2021 World Bank-defined low-income group, all located in the GBD super-region of sub-Saharan Africa. The proportion of livebirths occurring in sub-Saharan Africa was forecast to increase to more than half of the world's livebirths in 2100, to 41·3% (39·6–43·1) in 2050 and 54·3% (47·1–59·5) in 2100. The share of livebirths was projected to decline between 2021 and 2100 in most of the six other super-regions—decreasing, for example, in south Asia from 24·8% (23·7–25·8) in 2021 to 16·7% (14·3–19·1) in 2050 and 7·1% (4·4–10·1) in 2100—but was forecast to increase modestly in the north Africa and Middle East and high-income super-regions. Forecast estimates for the alternative combined scenario suggest that meeting SDG targets for education and contraceptive met need, as well as implementing pro-natal policies, would result in global TFRs of 1·65 (1·40–1·92) in 2050 and 1·62 (1·35–1·95) in 2100. The forecasting skill metric values for the IHME model were positive across all age groups, indicating that the model is better than the constant prediction.InterpretationFertility is declining globally, with rates in more than half of all countries and territories in 2021 below replacement level. Trends since 2000 show considerable heterogeneity in the steepness of declines, and only a small number of countries experienced even a slight fertility rebound after their lowest observed rate, with none reaching replacement level. Additionally, the distribution of livebirths across the globe is shifting, with a greater proportion occurring in the lowest-income countries. Future fertility rates will continue to decline worldwide and will remain low even under successful implementation of pro-natal policies. These changes will have far-reaching economic and societal consequences due to ageing populations and declining workforces in higher-income countries, combined with an increasing share of livebirths among the already poorest regions of the world.</p
