188 research outputs found
Weighted Well-Covered Claw-Free Graphs
A graph G is well-covered if all its maximal independent sets are of the same
cardinality. Assume that a weight function w is defined on its vertices. Then G
is w-well-covered if all maximal independent sets are of the same weight. For
every graph G, the set of weight functions w such that G is w-well-covered is a
vector space. Given an input claw-free graph G, we present an O(n^6)algortihm,
whose input is a claw-free graph G, and output is the vector space of weight
functions w, for which G is w-well-covered. A graph G is equimatchable if all
its maximal matchings are of the same cardinality. Assume that a weight
function w is defined on the edges of G. Then G is w-equimatchable if all its
maximal matchings are of the same weight. For every graph G, the set of weight
functions w such that G is w-equimatchable is a vector space. We present an
O(m*n^4 + n^5*log(n)) algorithm which receives an input graph G, and outputs
the vector space of weight functions w such that G is w-equimatchable.Comment: 14 pages, 1 figur
On the (parameterized) complexity of recognizing well-covered (r,l)-graphs.
An (r,ℓ)(r,ℓ)-partition of a graph G is a partition of its vertex set into r independent sets and ℓℓ cliques. A graph is (r,ℓ)(r,ℓ) if it admits an (r,ℓ)(r,ℓ)-partition. A graph is well-covered if every maximal independent set is also maximum. A graph is (r,ℓ)(r,ℓ)-well-covered if it is both (r,ℓ)(r,ℓ) and well-covered. In this paper we consider two different decision problems. In the (r,ℓ)(r,ℓ)-Well-Covered Graph problem ((r,ℓ)(r,ℓ) wcg for short), we are given a graph G, and the question is whether G is an (r,ℓ)(r,ℓ)-well-covered graph. In the Well-Covered (r,ℓ)(r,ℓ)-Graph problem (wc (r,ℓ)(r,ℓ) g for short), we are given an (r,ℓ)(r,ℓ)-graph G together with an (r,ℓ)(r,ℓ)-partition of V(G) into r independent sets and ℓℓ cliques, and the question is whether G is well-covered. We classify most of these problems into P, coNP-complete, NP-complete, NP-hard, or coNP-hard. Only the cases wc(r, 0)g for r≥3r≥3 remain open. In addition, we consider the parameterized complexity of these problems for several choices of parameters, such as the size αα of a maximum independent set of the input graph, its neighborhood diversity, or the number ℓℓ of cliques in an (r,ℓ)(r,ℓ)-partition. In particular, we show that the parameterized problem of deciding whether a general graph is well-covered parameterized by αα can be reduced to the wc (0,ℓ)(0,ℓ) g problem parameterized by ℓℓ, and we prove that this latter problem is in XP but does not admit polynomial kernels unless coNP⊆NP/polycoNP⊆NP/poly
- …
