296 research outputs found

    Tissue micro array analysis of ganglioside N-glycolyl GM3 expression and signal transducer and activator of transcription (STAT)-3 activation in relation to dendritic cell infiltration and microvessel density in non-small cell lung cancer

    Get PDF
    Background: Tumor immune escape and angiogenesis contribute to tumor progression, and gangliosides and activation of signal transducer and activator of transcription (STAT)-3 are implicated in these processes. As both are considered as novel therapeutic targets, we assessed the possible association of ganglioside GM3 expression and STAT3 activation with suppression of dendritic cell (DC) activation and angiogenesis in non-small cell lung cancer (NSCLC). Methods: Immunohistochemistry was performed on a tissue array to determine N-glycolyl GM3 (GM3) and phosphorylated STAT3 (pSTAT3) expression in 176 primary NSCLC resections. Median values of GM3 and pSTAT3 expression were used as cut off. Microvessel density (MVD) was determined by CD34 staining and morphology. CD1a and CD83 were used to determine infiltrating immature and mature dendritic cells, respectively. Results: 94% and 71% of the NSCLC samples expressed GM3 and nuclear pSTAT3, respectively. Median overall survival was 40.0 months. Both low GM3 expression and high pSTAT3 expression were associated with a worse survival, which reached near significance for GM3 (P = 0.08). Microvessel density (MVD), determined by CD34 staining and morphology, was lower in NSCLC samples with high GM3 expression. CD1a(+) cells (immature DCs) were more frequent in NSCLC tissues as compared to peritumoral lung tissue, while CD83(+) cells (mature DCs) were more frequent in peritumoral lung tissue. CD83(+) DCs were less frequent in NSCLC tissues with high GM3 expression. Conclusion: GM3 and pSTAT3 are widely expressed in NSCLC. Based on CD83 expression, GM3, but not pSTAT3, appeared to be involved in tumor-induced DC suppression. pSTAT3 expression was not associated with MVD, while GM3 might play an anti-angiogenic rol

    Improved induction of anti-melanoma T cells by adenovirus-5/3 fiber modification to target human DCs

    Get PDF
    To mount a strong anti-tumor immune response, non T cell inflamed (cold) tumors may require combination treatment encompassing vaccine strategies preceding checkpoint inhibition. In vivo targeted delivery of tumor-associated antigens (TAA) to dendritic cells (DCs), relying on the natural functions of primary DCs in situ, represents an attractive vaccination strategy. In this study we made use of a full-length MART-1 expressing C/B-chimeric adenoviral vector, consisting of the Ad5 capsid and the Ad3 knob (Ad5/3), which we previously showed to selectively transduce DCs in human skin and lymph nodes. Our data demonstrate that chimeric Ad5/3 vectors encoding TAA, and able to target human DCs in situ, can be used to efficiently induce expansion of functional tumor-specific CD8⁺ effector T cells, either from a naïve T cell pool or from previously primed T cells residing in the melanoma-draining sentinel lymph nodes (SLN). These data support the use of Ad3-knob containing viruses as vaccine vehicles for in vivo delivery. "Off-the-shelf" DC-targeted Ad vaccines encoding TAA could clearly benefit future immunotherapeutic approaches

    Differential effects of inhibitors of the PI3K/mTOR pathway on the expansion and functionality of regulatory T cells

    Get PDF
    AbstractThe PI3K/mTOR pathway is commonly deregulated in cancer. mTOR inhibitors are registered for the treatment of several solid tumors and novel inhibitors are explored clinically. Notably, this pathway also plays an important role in immunoregulation. While mTOR inhibitors block cell cycle progression of conventional T cells (Tconv), they also result in the expansion of CD4+CD25hiFOXP3+ regulatory T cells (Tregs), and this likely limits their clinical antitumor efficacy. Here, we compared the effects of dual mTOR/PI3K inhibition (using BEZ235) to single PI3K (using BKM120) or mTOR inhibition (using rapamycin and everolimus) on Treg expansion and functionality. Whereas rapamycin, everolimus and BEZ235 effected a relative expansion benefit for Tregs and increased their overall suppressive activity, BKM120 allowed for similar expansion rates of Tregs and Tconv without altering their overall suppressive activity. Therefore, PI3K inhibition alone might offer antitumor efficacy without the detrimental selective expansion of Tregs associated with mTOR inhibition

    CD40L coding oncolytic adenovirus allows long-term survival of humanized mice receiving dendritic cell therapy

    Get PDF
    Dendritic cells (DCs) are crucial players in promoting immune responses. Logically, adoptive DC therapy is a promising approach in cancer immunotherapy. One of the major obstacles in cancer immunotherapy in general is the immunosuppressive tumor microenvironment, which hampers the maturation and activation of DCs. Therefore, human clinical outcomes with DC therapy alone have been disappointing. In this study, we use fully serotype 3 oncolytic adenovirus Ad3-hTERT-CMV-hCD40L, expressing human CD40L, to modulate the tumor microenvironment with subsequently improved function of DCs. We evaluated the synergistic effects of Ad3-hTERT-CMV-hCD40L and DCs in the presence of human peripheral blood mononuclear cells ex vivo and in vivo. Tumors treated with Ad3-hTERT-CMV-hCD40L and DCs featured greater antitumor effect compared with unarmed virus or either treatment alone. 100% of humanized mice survived to the end of the experiment, while mice in all other groups died by day 88. Moreover, adenovirally-delivered CD40L induced activation of DCs, leading to induction of Th1 immune responses. These results support clinical trials with Ad3-hTERT-CMV-hCD40L in patients receiving DC therapy.Peer reviewe

    Oncolytic Adenovirus ORCA-010 Activates Proinflammatory Myeloid Cells and Facilitates T Cell Recruitment and Activation by PD-1 Blockade in Melanoma

    Get PDF
    Immune checkpoint inhibitors have advanced the treatment of melanoma. Nevertheless, a majority of patients are resistant, or develop resistance, to immune checkpoint blockade, which may be related to prevailing immune suppression by myeloid regulatory cells in the tumor microenvironment (TME). ORCA-010 is a novel oncolytic adenovirus that selectively replicates in, and lyses, cancer cells. We previously showed that ORCA-010 can activate melanoma-exposed conventional dendritic cells (cDCs). To study the effect of ORCA-010 on melanoma-conditioned macrophage development, we used an in vitro co-culture model of human monocytes with melanoma cell lines. We observed a selective survival and polarization of monocytes into M2-like macrophages (CD14(+)CD80(-)CD163(+)) in co-cultures with cell lines that expressed macrophage colony-stimulating factor. Oncolysis of these melanoma cell lines, effected by ORCA-010, activated the resulting macrophages and converted them to a more proinflammatory state, evidenced by higher levels of PD-L1, CD80, and CD86 and an enhanced capacity to prime allogenic T cells and induce a type-1 T cell response. To assess the effect of ORCA-010 on myeloid subset distribution and activation in vivo, ORCA-010 was intratumorally injected and tested for T cell activation and recruitment in the human adenovirus nonpermissive B16-OVA mouse melanoma model. While systemic PD-1 blockade in this model in itself did not modulate myeloid or T cell subset distribution and activation, when it was preceded by i.t. injection of ORCA-010, this induced an increased rate and activation state of CD8 alpha(+) cDC1, both in the TME and in the spleen. Observed increased rates of activated CD8(+) T cells, expressing CD69 and PD-1, were related to both increased CD8 alpha(+) cDC1 rates and M1/M2 shifts in tumor and spleen. In conclusion, the myeloid modulatory properties of ORCA-010 in melanoma, resulting in recruitment and activation of T cells, could enhance the antitumor efficacy of PD-1 blockade.Peer reviewe

    Oncolytic adenovirus shapes the ovarian tumor microenvironment for potent tumor-infiltrating lymphocyte tumor reactivity

    Get PDF
    BACKGROUND: Ovarian cancers often contain significant numbers of tumor-infiltrating lymphocytes (TILs) that can be readily harnessed for adoptive T-cell therapy (ACT). However, the immunosuppressive ovarian tumor microenvironment and lack of tumor reactivity in TILs can limit the effectiveness of the therapy. We hypothesized that by using an oncolytic adenovirus (Ad5/3-E2F-D24-hTNFa-IRES-hIL2; TILT-123) to deliver tumor necrosis factor alpha (TNFa) and interleukin-2 (IL-2), we could counteract immunosuppression, and enhance antitumor TIL responses in ovarian cancer (OVCA). METHODS: We established ex vivo tumor cultures freshly derived from patients with advanced OVCA and evaluated the effects of Ad5/3-E2F-D24-hTNFa-IRES-hIL2 or Ad5/3-E2F-D24 (the control virus without TNFa and IL-2) on TILs, cytokine response and tumor viability. Tumor reactivity was assessed by determining interferon gamma (IFNg) response of clinically relevant TILs towards autologous T-cell-depleted ex vivo tumor cultures pretreated with or without the aforementioned oncolytic adenoviruses. RESULTS: Treatment of ex vivo tumor cultures with Ad5/3-E2F-D24-hTNFa-IRES-hIL2 caused a substantial rise in proinflammatory signals: increased secretion of IFNg, CXCL10, TNFa and IL-2, and concomitant activation of CD4+ and CD8+ TILs. Potent tumor reactivity was seen, as clinically relevant TIL secreted high levels of IFNg in response to autologous T-cell-depleted ovarian ex vivo tumor cultures treated with Ad5/3-E2F-D24-hTNFa-IRES-hIL2. This phenomenon was independent of PD-L1 expression in tumor cells, a factor that determined the variability of IFNg responses seen in different patient samples. CONCLUSIONS: Overall, oncolytic adenovirus Ad5/3-E2F-D24-hTNFa-IRES-hIL2 was able to rewire the ovarian tumor microenvironment to accommodate heightened antitumor TIL reactivity. Such effects may improve the clinical effectiveness of ACT with TILs in patients with advanced OVCA.Peer reviewe

    CD1d-Invariant Natural Killer T Cell-Based Cancer Immunotherapy: α-Galactosylceramide and Beyond

    Get PDF
    CD1d-restricted invariant natural killer T (iNKT) cells are considered an attractive target for cancer immunotherapy. Upon their activation by glycolipid antigen and/or cytokines, iNKT cells can induce direct lysis of tumor cells but can also induce an antitumor immune response via their rapid production of proinflammatory cytokines that trigger the cytotoxic machinery of other components of the innate and adaptive immune system. Here, we provide an overview of various therapeutic approaches that have been evaluated or that are currently being developed and/or explored. These include administration of α-GalCer or alternative (glyco) lipid antigens, glycolipid-loaded antigen-presenting cells and liposomes, strategies that enhance CD1d expression levels or are based on ligation of CD1d, adoptive transfer of iNKT cells or chimeric antigen receptor iNKT cells, and tumor targeting of iNKT cells

    Corrigendum: CD1d-Invariant Natural Killer T Cell-Based Cancer Immunotherapy: α-Galactosylceramide and Beyond

    Get PDF
    by King, L. A., Lameris, R., de Gruijl, T. D., and van der Vliet, H. J. (2018). Front. Immunol. 9:1519. doi: 10.3389/fimmu.2018.01519 In the original article, we neglected to disclose that authors Lisa A. King and Roeland Lameris are currently funded by Lava Therapeutics and that Hans J. van der Vliet also acts as chief scientific officer of Lava Therapeutics. Hans J. van der Vliet's affiliation has been updated to reflect this. The corrected Conflict of Interest statement appears below

    Positive & Negative Roles of Innate Effector Cells in Controlling Cancer Progression

    Get PDF
    Innate immune cells are active at the front line of host defense against pathogens and now appear to play a range of roles under non-infectious conditions as well, most notably in cancer. Establishing the balance of innate immune responses is critical for the “flavor” of these responses and subsequent adaptive immunity and can be either “good or bad” in controlling cancer progression. The importance of innate NK cells in tumor immune responses has already been extensively studied over the last few decades, but more recently several relatively mono- or oligo-clonal [i.e., (semi-) invariant] innate T cell subsets received substantial interest in tumor immunology including invariant natural killer T (iNKT), γδ-T and mucosal associated invariant T (MAIT) cells. These subsets produce high levels of various pro- and/or anti-inflammatory cytokines/chemokines reflecting their capacity to suppress or stimulate immune responses. Survival of patients with cancer has been linked to the frequencies and activation status of NK, iNKT, and γδ-T cells. It has become clear that NK, iNKT, γδ-T as well as MAIT cells all have physiological roles in anti-tumor responses, which emphasize their possible relevance for tumor immunotherapy. A variety of clinical trials has focused on manipulating NK, iNKT, and γδ-T cell functions as a cancer immunotherapeutic approach demonstrating their safety and potential for achieving beneficial therapeutic effects, while the exploration of MAIT cell related therapies is still in its infancy. Current issues limiting the full therapeutic potential of these innate cell subsets appear to be related to defects and suppressive properties of these subsets that, with the right stimulus, might be reversed. In general, how innate lymphocytes are activated appears to control their subsequent abilities and consequent impact on adaptive immunity. Controlling these potent regulators and mediators of the immune system should enable their protective roles to dominate and their deleterious potential (in the specific context of cancer) to be mitigated
    corecore