14 research outputs found

    Convenient Approach to Polypeptide Copolymers Derived from Native Proteins

    No full text
    A convenient approach for the synthesis of narrowly dispersed polypeptide copolymers of defined compositions is presented. The controlled denaturation of the proteins serum albumin and lysozyme followed by an in situ stabilization with polyethylene­(oxide) chains yields polypeptide side chain copolymers of precisely defined backbone lengths as well as the presence of secondary structure elements. Supramolecular architectures are formed in solution because of the presence of hydrophobic and hydrophilic amino acids along the polypeptide main chain. Polypeptide copolymers reported herein reveal excellent solubility and stability in aqueous media and no significant cytotoxicity at relevant concentrations, and they can be degraded via proteolysis, which is very attractive for biomedical applications. This “semi-synthetic chemistry” approach is based on a novel and convenient concept for producing synthetic polypeptides from native protein resources, which complements traditional polypeptide synthesis and expression approaches and offers great opportunities for the preparation of diverse polypeptides with unique architectures

    Self-Assembly of High Molecular Weight Polypeptide Copolymers Studied via Diffusion Limited Aggregation

    No full text
    The assembly of high molecular weight polypeptides into complex architectures exhibiting structural complexity ranging from the nano- to the mesoscale is of fundamental importance for various protein-related diseases but also hold great promise for various nano- and biotechnological applications. Here, the aggregation of partially unfolded high molecular weight polypeptides into multiscale fractal structures is investigated by means of diffusion limited aggregation and atomic force microscopy. The zeta potential, the hydrodynamic radius, and the obtained fractal morphologies were correlated with the conformation of the polypeptide backbones as obtained from circular dichroism measurements. The polypeptides are modified with polyethylene oxide side chains to stabilize the polypeptides and to normalize intermolecular interactions. The modification with the hydrophobic thioctic acid alters the folding of the polypeptide backbone, resulting in a change in solution aggregation and fractal morphology. We found that a more compact folding results in dense and highly branched structures, whereas a less compact folded polypeptide chain yields a more directional assembly. Our results provide first evidence for the role of compactness of polypeptide folding on aggregation. Furthermore, the mesoscale-structured biofilms were used to achieve a hierarchical protein assembly, which is demonstrated by deposition of Rhodamine-labeled HSA with the preassembled fractal structures. These results contribute important insights to the fundamental understanding of the aggregation of high molecular weight polypeptides in general and provide opportunities to study nanostructure-related effects on biological systems such as adhesion, proliferation, and the development of, for example, neuronal cells

    pH responsive supramolecular core-shell protein hybrids

    No full text
    <p>PEGylation of proteins remains an integral part of macromolecular therapeutics due to its well-known benign effects and pharmacokinetic enhancement properties. We report herein that PEGylation can be taken to the next level of complexity and dynamic behaviour by introducing highly stable but responsive supramolecular handles. By attaching small boronic acid groups onto proteins and salicylhydroxamate moiety to end-functionalise PEG chains, we demonstrate a comprehensive study on the facile assembly/disassembly of a core-shell protein–polymer architecture using fluorescence and microscale thermophoresis on a macromolecular level. In addition, we demonstrate that both the activity and cellular transfer of functional proteins remained conserved throughout the assembly process thus establishing a rapid and orthogonal strategy towards protein PEGylation.</p

    Site-Selective Lysine Modification of Native Proteins and Peptides via Kinetically Controlled Labeling

    No full text
    The site-selective modification of the proteins RNase A, lysozyme C, and the peptide hormone somatostatin is presented via a kinetically controlled labeling approach. A single lysine residue on the surface of these biomolecules reacts with an activated biotinylation reagent at mild conditions, physiological pH, and at RT in a high yield of over 90%. In addition, fast reaction speed, quick and easy purification, as well as low reaction temperatures are particularly attractive for labeling sensitive peptides and proteins. Furthermore, the multifunctional bioorthogonal bioconjugation reagent (<b>19</b>) has been achieved allowing the site-selective incorporation of a single ethynyl group. The introduced ethynyl group is accessible for, e.g., click chemistry as demonstrated by the reaction of RNase A with azidocoumarin. The approach reported herein is fast, less labor-intensive and minimizes the risk for protein misfolding. Kinetically controlled labeling offers a high potential for addressing a broad range of native proteins and peptides in a site-selective fashion and complements the portfolio of recombinant techniques or chemoenzymatic approaches

    “Tag and Modify” Protein Conjugation with Dynamic Covalent Chemistry

    Get PDF
    The development of small protein tags that exhibit bioorthogonality, bond stability, and reversibility, as well as biocompatibility, holds great promise for applications in cellular environments enabling controlled drug delivery or for the construction of dynamic protein complexes in biological environments. Herein, we report the first application of dynamic covalent chemistry both for purification and for reversible assembly of protein conjugates using interactions of boronic acid with diols and salicylhydroxamates. Incorporation of the boronic acid (BA) tag was performed in a site-selective fashion by applying disulfide rebridging strategy. As an example, a model protein enzyme (lysozyme) was modified with the BA tag and purified using carbohydrate-based column chromatography. Subsequent dynamic covalent “click-like” bioconjugation with a salicylhydroxamate modified fluorescent dye (BODIPY FL) was accomplished while retaining its original enzymatic activity

    Confinement-Controlled Water Engenders Unusually High Electrochemical Capacitance

    No full text
    The electrodynamics of nanoconfined water have been shown to change dramatically compared to bulk water, opening room for safe electrochemical systems. We demonstrate a nanofluidic “water-only” battery that exploits anomalously high electrolytic properties of pure water at firm confinement. The device consists of a membrane electrode assembly of carbon-based nanomaterials, forming continuously interconnected water-filled nanochannels between the separator and electrodes. The efficiency of the cell in the 1–100 nm pore size range shows a maximum energy density at 3 nm, challenging the region of the current metal-ion batteries. Our results establish the electrodynamic fundamentals of nanoconfined water and pave the way for low-cost and inherently safe energy storage solutions that are much needed in the renewable energy sector

    Spatiotemporally Controlled Photolabeling of Genetically Unmodified Proteins in Live Cells

    No full text
    Selective labeling of the protein of interest (POI) in genetically unmodified live cells is crucial for understanding protein functions and kinetics in their natural habitat. In particular, spatiotemporally controlled installation of the labels on a POI under light control without affecting their original activity is in high demand but is a tremendous challenge. Here, we describe a novel ligand-directed photoclick strategy for spatiotemporally controlled labeling of endogenous proteins in live cells. It was realized with a designer labeling reagent skillfully integrating the photochemistries of 2-nitrophenylpropyloxycarbonyl and 3-hydroxymethyl-2-naphthol with an affinity ligand. Highly electrophilic ortho-naphthoquinone methide was photochemically released and underwent a proximity coupling reaction with nucleophilic amino acid residues on the POI in live cells. With fluorescein as a marker, this photoclick strategy enables time-resolved labeling of carbonic anhydrase subtypes localized either on the cell membrane or in the cytoplasm and a discriminable visualization of their metabolic kinetics. Given the versatility underlined by facilely tethering other functional entities (e.g., biotin, a peptide short chain) via acylation or (in cell) Huisgen cycloaddition, this affinity-driven photoclick chemistry opens up enormous opportunities for discovering dynamic functions and mechanistic interrogation of endogenous proteins in live cells

    pH Responsive Janus-like Supramolecular Fusion Proteins for Functional Protein Delivery

    No full text
    A facile, noncovalent solid-phase immobilization platform is described to assemble Janus-like supramolecular fusion proteins that are responsive to external stimuli. A chemically postmodified transporter protein, DHSA, is fused with (imino)­biotinylated cargo proteins via an avidin adaptor with a high degree of spatial control. Notably, the derived heterofusion proteins are able to cross cellular membranes, dissociate at acidic pH due to the iminobiotin linker and preserve the enzymatic activity of the cargo proteins β-galactosidase and the enzymatic subunit of <i>Clostridium botulinum</i> C2 toxin. The mix-and-match strategy described herein opens unique opportunities to access macromolecular architectures of high structural definition and biological activity, thus complementing protein ligation and recombinant protein expression techniques

    Dendronized Albumin Core–Shell Transporters with High Drug Loading Capacity

    No full text
    We describe the synthesis of a core–shell biohybrid consisting of a human serum albumin (HSA) core that serves as a reservoir for lipophilic molecules and a cationized shell region consisting of <b>ethynyl-G2.0</b>-<b>PAMAM</b> or <b>ethynyl-G3.0</b>-<b>PAMAM</b> dendrons. The binding capacity of lipophilic guests was quantified applying electron paramagnetic resonance (EPR) spectroscopy, and five to six out of seven pockets were still available compared with HSA. The attachment of <b>ethynyl-G2.0</b>-<b>PAMAM</b> dendrons to HSA yielded a nontoxic core–shell macromolecule that was clearly uptaken by A549 human epithelial cells due to the presence of the dendritic PAMAM shell. Significantly higher loading of doxorubicin was observed for dendronized <b>G2-DHSA</b> compared with the native protein due to the availability of binding pockets of the HSA core, and interaction with the dendritic shell. Dendronized <b>G2-DHSA</b>-doxorubicin displayed significant cytotoxicity resulting from high drug loading and high stability under different conditions, thus demonstrating its great potential as a transporter for drug molecules

    Chemoselective Dual Labeling of Native and Recombinant Proteins

    No full text
    The attachment of two different functionalities in a site-selective fashion represents a great challenge in protein chemistry. We report site specific dual functionalizations of peptides and proteins capitalizing on reactivity differences of cysteines in their free (thiol) and protected, oxidized (disulfide) forms. The dual functionalization of interleukin 2 and EYFP proceeded with no loss of bioactivity in a stepwise fashion applying maleimide and disulfide rebridging allyl-sulfone groups. In order to ensure broader applicability of the functionalization strategy, a novel, short peptide sequence that introduces a disulfide bridge was designed and site-selective dual labeling in the presence of biogenic groups was successfully demonstrated
    corecore