13 research outputs found

    The interplay between GPIb/IX antibodies, platelet hepatic sequestration, and TPO levels in patients with chronic ITP

    Get PDF
    Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder with an incompletely understood pathophysiology but includes platelet-clearance in the spleen and liver via T cells and/or platelet autoantibodies. Strikingly, thrombopoietin (TPO) levels remain low in ITP. Platelet-glycoprotein (GP)Ibα has been described to be required for hepatic TPO generation; however, the role of GPIb antibodies in relation to platelet hepatic sequestration and TPO levels, with consideration of platelet counts, remains to be elucidated. Therefore, we examined 53 patients with chronic and nonsplenectomized ITP for whom we conducted indium-labeled autologous platelet scintigraphy and measured platelet antibodies and TPO levels. Upon stratification toward the severity of thrombocytopenia, no negative association was observed between GPIb/IX antibodies and TPO levels, suggesting that GPIb/IX antibodies do not inhibit or block TPO levels. Surprisingly, we observed a positive association between GPIb/IX antibody levels and TPO levels and GPIb/IX antibodies and platelet hepatic sequestration in patients with severe, but not mild or moderate, thrombocytopenia. In addition, platelet hepatic sequestration and TPO levels were positively associated. This collectively indicates that GPIb/IX antibodies may be associated with increased platelet hepatic sequestration and elevated TPO levels in patients with severe thrombocytopenic ITP; however, further research is warranted to elucidate the pathophysiologic mechanisms.</p

    Proteoglycans guide SDF-1-induced migration of hematopoietic progenitor cells

    No full text
    Stromal cell-derived factor-1 (SDF-1) is a chemoattractant involved in hematopoietic progenitor cell (HPC) trafficking to the bone marrow. We studied the role of bone marrow endothelial proteoglycans (PGs) in SDF-1-mediated migration of HPC using a transwell assay. A subclone of progenitor cell line KG-1 (KG-1v) was used, displaying CXCR4-dependent transmigration. Cell surface PGs on bone marrow endothelial cell line 4LHBMEC did not mediate SDF-1-induced transendothelial migration. In contrast, transwell filters precoated with various glycosaminoglycans (GAGs) enhanced migration toward SDF-1. SDF-1-induced migration was reduced by degradation of heparan sulfate in subendothelial matrix produced by 4LHBMEC. The stimulating effect of GAGs was caused by the formation of a stable haptotactic SDF-1 gradient, as SDF-1 bound to immobilized GAGs and triggered migration. Soluble heparan sulfate enhanced SDF-1-induced migration dose-dependently, suggesting that SDF-1-heparan sulfate complexes optimized SDF-1 presentation. In conclusion, we provide evidence that PGs in the subendothelial matrix establish an SDF-1 gradient guiding migrating HPC into the bone marrow

    Platelets in ITP : Victims in charge of their own fate?

    Get PDF
    Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder. The pathophysiological mechanisms leading to low platelet levels in ITP have not been resolved, but at least involve autoantibody-dependent and/or cytotoxic T cell mediated platelet clearance and impaired megakary-opoiesis. In addition, T cell imbalances involving T regulatory cells (Tregs) also appear to play an important role. Intriguingly, over the past years it has become evident that platelets not only mediate hemostasis, but are able to modulate inflammatory and immunological processes upon activation. Platelets, therefore, might play an immuno-modulatory role in the pathogenesis and pathophysiology of ITP. In this respect, we propose several possible pathways in which platelets themselves may participate in the immune response in ITP. First, we will elaborate on how platelets might directly promote inflammation or stimulate immune responses in ITP. Second, we will discuss two ways in which platelet microparticles (PMPs) might contribute to the disrupted immune balance and impaired thrombopoiesis by megakaryocytes in ITP. Importantly, from these insights, new starting points for further research and for the design of potential future therapies for ITP can be envisioned

    Evaluation of Dutch guideline for just-in-time addition of plerixafor to stem cell mobilization in patients who fail with granulocyte-colony-stimulating factor

    No full text
    Background: Plerixafor in combination with granulocyte-colony-stimulating factor (G-CSF) is approved for the use of stem cell collection in patients who fail to mobilize on G-CSF. In 2009 the Stem Cell Working Party of the Dutch-Belgian Cooperative Trial group for Hematology Oncology (HOVON) composed a guideline for the use of plerixafor. According to this guideline it is recommended to add plerixafor to G-CSF in patients with circulating CD34+ cell counts of fewer than 20 × 106/L on 2 consecutive days accompanied by increasing white blood cells.  Study Design and Methods: In this analysis we evaluated retrospectively the outcome of the use of this guideline in the Netherlands. In total 111 patients received plerixafor with a median one administration (range, one to four administrations). Of these patients 55.8% had non-Hodgkin lymphoma, 31.5% multiple myeloma, 8.1% Hodgkin lymphoma, and 4.5% nonhematologic malignancies.  Results: In 63.9% patients sufficient numbers of CD34+ cells were collected. In patients with multiple myeloma more successful mobilizations with plerixafor were observed compared to patients with non-Hodgkin lymphoma (71.4% vs. 61.3%). In patients with circulating CD34+ cell counts of at least 2.0 × 106/L before administration of plerixafor a successful mobilization was achieved in 76.5%, and in the patients with very low (0-1 × 106/L) circulating CD34+ cell counts the success rate was 44.2%.  Conclusion: Application of the HOVON guideline on the just-in-time administration of plerixafor is effective for mobilization of hematopoietic stem cells in the majority of patients. Stem cell yield in patients with non-Hodgkin lymphoma was lower compared to patients with multiple myeloma. Also patients with very low circulating CD34+ cells before addition of plerixafor might benefit from this approach

    Homing and clonogenic outgrowth of CD34+ peripheral blood stem cells: A role for L-selectin?

    No full text
    Objective. After transplantation of hematopoietic stem cells, adhesion molecules play a major role in the multistep process of engraftment in which L-selectin is suggested to be of relevance. A positive correlation previously was found between the number of reinfused L-selectin+ stem cells and platelet recovery. In the present study, we determined the role of L-selectin in different engraftment steps, i.e., adhesion to endothelial cells, migration, and clonogenic outgrowth by in vitro assays that closely mimic the in vivo situation. Materials and Methods. Flow adhesion and migration experiments were performed using the human bone marrow endothelial cell line 4LHBMEC and isolated peripheral CD34+ cells with or without blocking of L-selectin-ligand interaction. Various clonogenic assays, including serum-free colony-forming unit-megakaryocytes (CFU-MK) and burst-forming unit-megakaryocytes (BFU-MK), were performed with sorted L-selectin+L-selectin- cells or in the presence of antibodies. Results. Blocking of L-selectin on CD34+ cells did not significantly affect rolling over and firm adhesion to 4LHBMEC. In addition, no role for L-selectin was found in transendothelial migration experiments. Finally, in clonogenic outgrowth of sorted or anti-L-selectin monoclonal antibody-incubated CD34+ cells, no key role for L-selectin expression could be defined in BFU-MK and CFU-MK assays. Conclusion. Using in vitro assays for CD34+ stem cell adhesion, migration, and clonogenic capacity, we were not able to define a major role for L-selectin. © 2002 International Society for Experimental Hematology. Published by Elsevier Science Inc

    Evaluation of Dutch guideline for just-in-time addition of plerixafor to stem cell mobilization in patients who fail with granulocyte-colony-stimulating factor

    No full text
    Background: Plerixafor in combination with granulocyte-colony-stimulating factor (G-CSF) is approved for the use of stem cell collection in patients who fail to mobilize on G-CSF. In 2009 the Stem Cell Working Party of the Dutch-Belgian Cooperative Trial group for Hematology Oncology (HOVON) composed a guideline for the use of plerixafor. According to this guideline it is recommended to add plerixafor to G-CSF in patients with circulating CD34+ cell counts of fewer than 20 × 106/L on 2 consecutive days accompanied by increasing white blood cells.  Study Design and Methods: In this analysis we evaluated retrospectively the outcome of the use of this guideline in the Netherlands. In total 111 patients received plerixafor with a median one administration (range, one to four administrations). Of these patients 55.8% had non-Hodgkin lymphoma, 31.5% multiple myeloma, 8.1% Hodgkin lymphoma, and 4.5% nonhematologic malignancies.  Results: In 63.9% patients sufficient numbers of CD34+ cells were collected. In patients with multiple myeloma more successful mobilizations with plerixafor were observed compared to patients with non-Hodgkin lymphoma (71.4% vs. 61.3%). In patients with circulating CD34+ cell counts of at least 2.0 × 106/L before administration of plerixafor a successful mobilization was achieved in 76.5%, and in the patients with very low (0-1 × 106/L) circulating CD34+ cell counts the success rate was 44.2%.  Conclusion: Application of the HOVON guideline on the just-in-time administration of plerixafor is effective for mobilization of hematopoietic stem cells in the majority of patients. Stem cell yield in patients with non-Hodgkin lymphoma was lower compared to patients with multiple myeloma. Also patients with very low circulating CD34+ cells before addition of plerixafor might benefit from this approach

    Risk Factors, Treatment, and Immune Dysregulation in Autoimmune Cytopenia after Allogeneic Hematopoietic Stem Cell Transplantation in Pediatric Patients

    No full text
    Autoimmune or alloimmune cytopenia (AIC) is a known rare complication of hematopoietic stem cell transplantation (SCT). AIC after SCT is considered difficult to treat and is associated with high morbidity and mortality. In this retrospective study in pediatric patients we evaluated incidence, outcome, potential risk factors, and current treatment strategies. A nested matched case-control study was performed to search for biomarkers associated with AIC. Of 531 consecutive SCTs at our center between 2000 and 2016, 26 were complicated by the development of AIC (cumulative incidence, 5.0%) after a median of 5 months post-SCT. Autoimmune hemolytic anemia was the most common AIC with 12 patients (46%). We identified nonmalignant disease, alemtuzumab serotherapy pre-SCT, and cytomegalovirus (CMV) reactivation as independently associated risk factors. The cytokine profile of patients at the time of AIC diagnosis appeared to skew toward a more pronounced Th 2 response compared with control subjects at the corresponding time point post-SCT. Corticosteroids and intravenous immunoglobulin as first-line treatment or a wait-and-see approach led to resolution of AIC in 35% of cases. Addition of step-up therapies rituximab (n = 15), bortezomib (n = 7), or sirolimus (n = 3) was associated with AIC resolution in 40%, 57%, and 100% of cases, respectively. In summary, we identified CMV reactivation post-SCT as a new clinical risk factor for the development of AIC in children. The cytokine profile during AIC appears to favor a Th 2 response. Rituximab, bortezomib, and sirolimus are promising step-up treatment modalities
    corecore