15 research outputs found

    Single point mutations reveal amino acid residues important for Chromobacterium violaceum transaminase activity in the production of unnatural amino acids

    No full text
    Unnatural amino acids (UAAs) are chiral amines with high application potential in drug discovery and synthesis of other valuable chemicals. Biocatalysis offers the possibility to synthesise novel optically pure UAAs with different physical and chemical properties. While the biocatalytic potential of transaminases in the synthesis of UAAs has been demonstrated, there is still a need to improve the activity with non-native substrates and to understand which amino acids residues are important for activity with these UAAs. Using a rational design approach, six variants of Chromobacterium violaceum DSM30191 transaminase (CV_TA) carrying a single and one variant carrying two substitutions were generated. Among the variants with a single substitution, CV_Y168F showed a 2 to 2.6-fold increased affinity for 2-oxooctanoic acid (2-OOA) and 3-oxobutyric acid (3-OBA) methyl ester used to synthesise an ?- and ?-UAA. Analysis of the first half of the transaminase reaction showed no change in the activity with the donor (S)-1-phenylethylamine. The combination of W60C and Y168F substitutions improved the CV_TA affinity for 2-OOA 10-fold compared to the wild type. Other substitutions showed no change, or reduced activity with the tested substrates. Our findings provide structural information on CV_TA and demonstrate the potential of rational design for biosynthesis of UAA

    Four Bacillus sp. soil isolates capable of degrading phenol, toluene, biphenyl, naphthalene and other aromatic compounds exhibit different aromatic catabolic potentials

    Get PDF
    Two novel Bacillus sp. were isolated from a soil sample from a bank of the Tamiš river in close proximity to a petrochemical facility. They were capable of utilizing a broad range of aromatic compounds as a sole source of carbon and energy (including phenol, benzene, toluene, biphenyl, naphthalene). The isolates were designated as Bacillus sp. TN41 and TN42, based on their 16S rDNA sequence. Their catabolic potential was compared to two Bacillus sp. strains (PS1 and PS11) isolated from the rhizosphere of the endemorelict plant Ramonda serbica. Specific activities of phenol hydroxylase, catechol 1,2-dioxygenase and catechol 2,3-dioxygenase were analyzed from crude cell extracts of the isolates, as well as the temperature and pH effects on enzyme activity. Although all four isolates had the ability to degrade a similar range of aromatic compounds, the specific activities of the enzymes indicative of aromatic compound catabolism of TN isolates were 2 to 90-fold lower compared to the PS isolates. Phenol hydroxylase and catechol dioxygenases exhibited broad temperature (10°C-80°C) and pH (4-9) activity ranges in all four Bacillus isolates. While phenol inhibited both phenol hydroxylase and catechol dioxygenases in the TN strains, it was an inducer for phenol hydroxylase in the PS strains

    High Cell Density Conversion of Hydrolysed Waste Cooking Oil Fatty Acids Into Medium Chain Length Polyhydroxyalkanoate Using Pseudomonas putida KT2440

    No full text
    Waste cooking oil (WCO) is a major pollutant, primarily managed through incineration. The high cell density bioprocess developed here allows for better use of this valuable resource since it allows the conversion of WCO into biodegradable polymer polyhydroxyalkanoate (PHA). WCO was chemically hydrolysed to give rise to a mixture of fatty acids identical to the fatty acid composition of waste cooking oil. A feed strategy was developed to delay the stationary phase, and therefore achieve higher final biomass and biopolymer (PHA) productivity. In fed batch (pulse feeding) experiments Pseudomonas putida KT2440 achieved a PHA titre of 58 g/l (36.4% of CDW as PHA), a PHA volumetric productivity of 1.93 g/l/h, a cell density of 159.4 g/l, and a biomass yield of 0.76 g/g with hydrolysed waste cooking oil fatty acids (HWCOFA) as the sole substrate. This is up to 33-fold higher PHA productivity compared to previous reports using saponified palm oil. The polymer (PHA) was sticky and amorphous, most likely due to the long chain monomers acting as internal plasticisers. High cell density cultivation is essential for the majority of industrial processes, and this bioprocess represents an excellent basis for the industrial conversion of WCO into PHA.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazi

    Unraveling 1,4-Butanediol Metabolism in Pseudomonas putida KT2440

    No full text
    Plastics, in all forms, are a ubiquitous cornerstone of modern civilization. Although humanity undoubtedly benefits from the versatility and durability of plastics, they also cause a tremendous burden for the environment. Bio-upcycling is a promising approach to reduce this burden, especially for polymers that are currently not amenable to mechanical recycling. Wildtype P. putida KT2440 is able to grow on 1,4-butanediol as sole carbon source, but only very slowly. Adaptive laboratory evolution (ALE) led to the isolation of several strains with significantly enhanced growth rate and yield. Genome re-sequencing and proteomic analysis were applied to characterize the genomic and metabolic basis of efficient 1,4-butanediol metabolism. Initially, 1,4-butanediol is oxidized to 4-hydroxybutyrate, in which the highly expressed dehydrogenase enzymes encoded within the PP_2674-2680 ped gene cluster play an essential role. The resulting 4-hydroxybutyrate can be metabolized through three possible pathways: (i) oxidation to succinate, (ii) CoA activation and subsequent oxidation to succinyl-CoA, and (iii) beta oxidation to glycolyl-CoA and acetyl-CoA. The evolved strains were both mutated in a transcriptional regulator (PP_2046) of an operon encoding both beta-oxidation related genes and an alcohol dehydrogenase. When either the regulator or the alcohol dehydrogenase is deleted, no 1,4-butanediol uptake or growth could be detected. Using a reverse engineering approach, PP_2046 was replaced by a synthetic promotor (14g) to overexpress the downstream operon (PP_2047-2051), thereby enhancing growth on 1,4-butanediol. This work provides a deeper understanding of microbial 1,4-butanediol metabolism in P. putida, which is also expandable to other aliphatic alpha-omega diols. It enables the more efficient metabolism of these diols, thereby enabling biotechnological valorization of plastic monomers in a bio-upcycling approach

    Towards bio-upcycling of polyethylene terephthalate

    No full text
    Over 359 million tons of plastics were produced worldwide in 2018, with significant growth expected in the near future, resulting in the global challenge of end-of-life management. The recent identification of enzymes that degrade plastics previously considered non-biodegradable opens up opportunities to steer the plastic recycling industry into the realm of biotechnology.Here, the sequential conversion of post-consumer polyethylene terephthalate (PET) into two types of bioplastics is presented: a medium chain-length polyhydroxyalkanoate (PHA) and a novel bio-based poly(amide urethane) (bio-PU). PET films are hydrolyzed by a thermostable polyester hydrolase yielding highly pure terephthalate and ethylene glycol. The obtained hydrolysate is used directly as a feedstock for a terephthalate-degrading Pseudomonas umsongensis GO16, also evolved to efficiently metabolize ethylene glycol, to produce PHA. The strain is further modified to secrete hydroxyalkanoyloxy-alkanoates (HAAs), which are used as monomers for the chemo-catalytic synthesis of bio-PU. In short, a novel value-chain for PET upcycling is shown that circumvents the costly purification of PET monomers, adding technological flexibility to the global challenge of end-of-life management of plastics
    corecore