38 research outputs found

    Herbal medicine IMOD suppresses LPS-induced production of proinflammatory cytokines in human dendritic cells

    Get PDF
    Traditional medicines that stimulate or modulate the immune system can be used as innovative approaches to treat immunological diseases. The herbal medicine IMOD has been shown to strongly modulate immune responses in several animal studies as well as in clinical trials. However, little is known about the mechanisms of IMOD to modulate immunity. Here we have investigated whether IMOD modulates the immunological function of human dendritic cells (DCs). IMOD alone did not induce DC maturation nor production of cytokines. Notably, IMOD decreased the production of pro-inflammatory cytokines IL-6, IL-12 p70 and TNFα by LPS-activated DCs at both mRNA and protein levels in a dose dependent manner. In contrast, treatment with IMOD did not affect LPS induced-production of the anti-inflammatory cytokine IL-10. Furthermore, IMOD inhibited T cell activation/proliferation by LPS-treated DCs and skewed T-cells responses towards the T helper type 2 polarization. These data strongly indicate that IMOD has a potent immunomodulatory ability that affects TLR signaling and thereby modulates DC function. Insight into the immunomodulatory effect of herbal medicine IMOD may provide innovative strategies to affect the immune system and to help combat various disease

    Selective C-Rel Activation via Malt1 Controls Anti-Fungal TH-17 Immunity by Dectin-1 and Dectin-2

    Get PDF
    C-type lectins dectin-1 and dectin-2 on dendritic cells elicit protective immunity against fungal infections through induction of TH1 and TH-17 cellular responses. Fungal recognition by dectin-1 on human dendritic cells engages the CARD9-Bcl10-Malt1 module to activate NF-κB. Here we demonstrate that Malt1 recruitment is pivotal to TH-17 immunity by selective activation of NF-κB subunit c-Rel, which induces expression of TH-17-polarizing cytokines IL-1β and IL-23p19. Malt1 inhibition abrogates c-Rel activation and TH-17 immunity to Candida species. We found that Malt1-mediated activation of c-Rel is similarly essential to induction of TH-17-polarizing cytokines by dectin-2. Whereas dectin-1 activates all NF-κB subunits, dectin-2 selectively activates c-Rel, signifying a specialized TH-17-enhancing function for dectin-2 in anti-fungal immunity by human dendritic cells. Thus, dectin-1 and dectin-2 control adaptive TH-17 immunity to fungi via Malt1-dependent activation of c-Rel

    Fucose-specific DC-SIGN signalling directs T helper cell type-2 responses via IKKε- and CYLD-dependent Bcl3 activation

    No full text
    Carbohydrate-specific signalling through DC-SIGN provides dendritic cells with plasticity to tailor immunity to the nature of invading microbes. Here we demonstrate that recognition of fucose-expressing extracellular pathogens like Schistosoma mansoni and Helicobacter pylori by DC-SIGN favors T helper cell type-2 (TH2) responses via activation of atypical NF-κB family member Bcl3. Crosstalk between TLR and DC-SIGN signalling results in TLR-induced MK2-mediated phosphorylation of LSP1, associated with DC-SIGN, upon fucose binding. Subsequently, IKKε and CYLD are recruited to phosphorylated LSP1. IKKε activation is pivotal for suppression of CYLD deubiquitinase activity and subsequent nuclear translocation of ubiquitinated Bcl3. Bcl3 activation represses TLR-induced proinflammatory cytokine expression, while enhancing interleukin-10 (IL-10) and TH2-attracting chemokine expression, shifting TH differentiation from TH1 to TH2 polarization. Thus, DC-SIGN directs adaptive TH2 immunity to fucose-expressing pathogens via an IKKε-CYLD-dependent signalling pathway leading to Bcl3 activation, which might be targeted in vaccination strategies or to prevent aberrant inflammation and allerg

    HIV-1 subverts the complement system in semen to enhance viral transmission

    No full text
    Semen is important in determining HIV-1 susceptibility but it is unclear how it affects virus transmission during sexual contact. Mucosal Langerhans cells (LCs) are the first immune cells to encounter HIV-1 during sexual contact and have a barrier function as LCs are restrictive to HIV-1. As semen from people living with HIV-1 contains complement-opsonized HIV-1, we investigated the effect of complement on HIV-1 dissemination by human LCs in vitro and ex vivo. Notably, pre-treatment of HIV-1 with semen enhanced LC infection compared to untreated HIV-1 in the ex vivo explant model. Infection of LCs and transmission to target cells by opsonized HIV-1 was efficiently inhibited by blocking complement receptors CR3 and CR4. Complement opsonization of HIV-1 enhanced uptake, fusion, and integration by LCs leading to an increased transmission of HIV-1 to target cells. However, in the absence of both CR3 and CR4, C-type lectin receptor langerin was able to restrict infection of complement-opsonized HIV-1. These data suggest that complement enhances HIV-1 infection of LCs by binding CR3 and CR4, thereby bypassing langerin and changing the restrictive nature of LCs into virus-disseminating cells. Targeting complement factors might be effective in preventing HIV-1 transmission

    Syndecan 4 Upregulation on Activated Langerhans Cells Counteracts Langerin Restriction to Facilitate Hepatitis C Virus Transmission

    No full text
    Sexually transmitted Hepatitis C virus (HCV) infections and high reinfections are a major concern amongst men who have sex with men (MSM) living with HIV-1 and HIV-negative MSM. Immune activation and/or HIV-1 coinfection enhance HCV susceptibility via sexual contact, suggesting that changes in immune cells or external factors are involved in increased susceptibility. Activation of anal mucosal Langerhans cells (LCs) has been implicated in increased HCV susceptibility as activated but not immature LCs efficiently retain and transmit HCV to other cells. However, the underlying molecular mechanism of transmission remains unclear. Here we identified the Heparan Sulfate Proteoglycan Syndecan 4 as the molecular switch, controlling HCV transmission by LCs. Syndecan 4 was highly upregulated upon activation of LCs and interference with Heparan Sulfate Proteoglycans or silencing of Syndecan 4 abrogated HCV transmission. These data strongly suggest that Syndecan 4 mediates HCV transmission by activated LCs. Notably, our data also identified the C-type lectin receptor langerin as a restriction factor for HCV infection and transmission. Langerin expression abrogated HCV infection in HCV permissive cells, whereas langerin expression on the Syndecan 4 expressing cell line strongly decreased HCV transmission to a target hepatoma cell line. These data suggest that the balanced interplay between langerin restriction and Syndecan 4 transmission determines HCV dissemination. Silencing of langerin enhanced HCV transmission whereas silencing Syndecan 4 on activated LCs decreased transmission. Blocking Heparan Sulfate Proteoglycans abrogated HCV transmission by LCs ex vivo identifying Heparan Sulfate Proteoglycans and Syndecan 4 as potential targets to prevent sexual transmission of HCV. Thus, our data strongly suggest that the interplay between receptors promotes or restricts transmission and further indicate that Syndecan 4 is the molecular switch controlling HCV susceptibility after sexual contact.status: publishe

    Syndecan 4 Upregulation on Activated Langerhans Cells Counteracts Langerin Restriction to Facilitate Hepatitis C Virus Transmission

    No full text
    Sexually transmitted Hepatitis C virus (HCV) infections and high reinfections are a major concern amongst men who have sex with men (MSM) living with HIV-1 and HIV-negative MSM. Immune activation and/or HIV-1 coinfection enhance HCV susceptibility via sexual contact, suggesting that changes in immune cells or external factors are involved in increased susceptibility. Activation of anal mucosal Langerhans cells (LCs) has been implicated in increased HCV susceptibility as activated but not immature LCs efficiently retain and transmit HCV to other cells. However, the underlying molecular mechanism of transmission remains unclear. Here we identified the Heparan Sulfate Proteoglycan Syndecan 4 as the molecular switch, controlling HCV transmission by LCs. Syndecan 4 was highly upregulated upon activation of LCs and interference with Heparan Sulfate Proteoglycans or silencing of Syndecan 4 abrogated HCV transmission. These data strongly suggest that Syndecan 4 mediates HCV transmission by activated LCs. Notably, our data also identified the C-type lectin receptor langerin as a restriction factor for HCV infection and transmission. Langerin expression abrogated HCV infection in HCV permissive cells, whereas langerin expression on the Syndecan 4 expressing cell line strongly decreased HCV transmission to a target hepatoma cell line. These data suggest that the balanced interplay between langerin restriction and Syndecan 4 transmission determines HCV dissemination. Silencing of langerin enhanced HCV transmission whereas silencing Syndecan 4 on activated LCs decreased transmission. Blocking Heparan Sulfate Proteoglycans abrogated HCV transmission by LCs ex vivo identifying Heparan Sulfate Proteoglycans and Syndecan 4 as potential targets to prevent sexual transmission of HCV. Thus, our data strongly suggest that the interplay between receptors promotes or restricts transmission and further indicate that Syndecan 4 is the molecular switch controlling HCV susceptibility after sexual contact

    Fungal engagement of the C-type lectin mincle suppresses dectin-1-induced antifungal immunity

    Get PDF
    Recognition of fungal pathogens by C-type lectin receptor (CLR) dectin-1 on human dendritic cells is essential for triggering protective antifungal TH1 and TH17 immune responses. We show that Fonsecaea monophora, a causative agent of chromoblastomycosis, a chronic fungal skin infection, evades these antifungal responses by engaging CLR mincle and suppressing IL-12, which drives TH1 differentiation. Dectin-1 triggering by F. monophora activates transcription factor IRF1, which is crucial for IL12A transcription via nucleosome remodeling. However, simultaneous F. monophora binding to mincle induces an E3 ubiquitin ligase Mdm2-dependent degradation pathway, via Syk-CARD9-mediated PKB signaling, that leads to loss of nuclear IRF1 activity, hence blocking IL12A transcription. The absence of IL-12 leads to impaired TH1 responses and promotes TH2 polarization. Notably, mincle is similarly exploited by other chromoblastomycosis-associated fungi to redirect TH responses. Thus, mincle is a fungal receptor that can suppress antifungal immunity and, as such, is a potential therapeutic targe

    RIG-I-like Receptor Triggering by Dengue Virus Drives Dendritic Cell Immune Activation and TH1 Differentiation

    No full text
    Dengue virus (DENV) causes 400 million infections annually and is one of several viruses that can cause viral hemorrhagic fever, which is characterized by uncontrolled immune activation resulting in high fever and internal bleeding. Although the underlying mechanisms are unknown, massive cytokine secretion is thought to be involved. Dendritic cells (DCs) are the main target cells of DENV, and we investigated their role in DENV-induced cytokine production and adaptive immune responses. DENV infection induced DC maturation and secretion of IL-1β, IL-6, and TNF. Inhibition of DENV RNA replication abrogated these responses. Notably, silencing of RNA sensors RIG-I or MDA5 abrogated DC maturation, as well as cytokine responses by DENV-infected DCs. DC maturation was induced by type I IFN responses because inhibition of IFN-α/β receptor signaling abrogated DENV-induced DC maturation. Moreover, DENV infection of DCs resulted in CCL2, CCL3, and CCL4 expression, which was abrogated after RIG-I and MDA5 silencing. DCs play an essential role in TH cell differentiation, and we show that RIG-I and MDA5 triggering by DENV leads to TH1 polarization, which is characterized by high levels of IFN-γ. Notably, cytokines IL-6, TNF, and IFN-γ and chemokines CCL2, CCL3, and CCL4 have been associated with disease severity, endothelial dysfunction, and vasodilation. Therefore, we identified RIG-I and MDA5 as critical players in innate and adaptive immune responses against DENV, and targeting these receptors has the potential to decrease hemorrhagic fever in patient

    RIG-I-like receptor activation by dengue virus drives follicular T helper cell formation and antibody production

    No full text
    Follicular T helper cells (TFH) are fundamental in orchestrating effective antibody-mediated responses critical for immunity against viral infections and effective vaccines. However, it is unclear how virus infection leads to TFH induction. We here show that dengue virus (DENV) infection of human dendritic cells (DCs) drives TFH formation via crosstalk of RIG-I-like receptor (RLR) RIG-I and MDA5 with type I Interferon (IFN) signaling. DENV infection leads to RLR-dependent IKKε activation, which phosphorylates IFNα/β receptor-induced STAT1 to drive IL-27 production via the transcriptional complex ISGF3. Inhibiting RLR activation as well as neutralizing antibodies against IL-27 prevented TFH formation. DENV-induced CXCR5+PD-1+Bcl-6+ TFH cells secreted IL-21 and activated B cells to produce IgM and IgG. Notably, RLR activation by synthetic ligands also induced IL-27 secretion and TFH polarization. These results identify an innate mechanism by which antibodies develop during viral disease and identify RLR ligands as potent adjuvants for TFH-promoting vaccination strategie

    Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1 beta via a noncanonical caspase-8 inflammasome

    No full text
    Production of the proinflammatory cytokine interleukin 1 beta (IL-1 beta) by dendritic cells is crucial in host defense. Here we identify a previously unknown role for dectin-1 in the activation of a noncanonical caspase-8 inflammasome in response to fungi and mycobacteria. Dectin-1 induced both the production and maturation of IL-1 beta through signaling routes mediated by the kinase Syk. Whereas the CARD9-Bcl-10-MALT1 scaffold directed IL1B transcription, the recruitment of MALT1-caspase-8 and ASC into this scaffold was crucial for processing of pro-IL-1 beta by caspase-8. In contrast to activation of the canonical caspase-1 inflammasome, which requires additional activation of cytosolic receptors, activation of the noncanonical caspase-8 inflammasome was independent of pathogen internalization. Thus, dectin-1 acted as an extracellular sensor for pathogens that induced both IL-1 beta production and maturation through a noncanonical caspase-8-dependent inflammasome for protective immunit
    corecore