8 research outputs found

    Ligand-based virtual screening interface between PyMOL and LiSiCA

    Get PDF
    Ligand-based virtual screening of large small-molecule databases is an important step in the early stages of drug development. It is based on the similarity principle and is used to reduce the chemical space of large databases to a manageable size where chosen ligands can be experimentally tested. Ligand-based virtual screening can also be used to identify bioactive molecules with different basic scaffolds compared to already known bioactive molecules, thus having the potential to increase the structural variability of compounds. Here, we present an interface between the popular molecular graphics system PyMOL and the ligand-based virtual screening software LiSiCA available at http://insilab.org/lisica-plugin and demonstrate how this interface can be used in the early stages of drug discovery process

    Discovery of mycobacterium tuberculosis InhA inhibitors by binding sites comparison and ligands prediction

    No full text
    Drug discovery is usually focused on a single protein target; in this process, existing compounds that bind to related proteins are often ignored. We describe ProBiS plugin, extension of our earlier ProBiSi-ligands approach, which for a given protein structure allows prediction of its binding:sites and, for each binding site, the ligands from similar binding sites in the Protein Data Bank. We developed a new database of precalculated binding site comparisons of about 290000 proteins to allow fast prediction of binding sites in existing proteins. The plugin enables advanced viewing of predicted binding sites, ligands' poses, and their interactions in three-dimensional graphics. Using the InhA query protein, an enoyl reductase enzyme in the Mycobacterium tuberculosis fatty acid biosynthesis pathway, we predicted its possible ligands and assessed their inhibitory activity experimentally. This resulted in three previously unrecognized inhibitors with novel scaffolds, demonstrating the plugin's utility in the early drug discovery process
    corecore