141 research outputs found

    Perfluorinated compounds in the Pearl River and Yangtze River of China

    Get PDF
    A total of 14 perfluorinated compounds (PFCs) were quantified in river water samples collected from tributaries of the Pearl River (Guangzhou Province, south China) and the Yangtze River (central China). Among the PFCs analyzed, perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) were the two compounds with the highest concentrations. PFOS concentrations ranged from 0.90 to 99 ng/1 and < 0.01-14 ng/1 in samples from the Pearl River and Yangtze River, respectively; whereas those for PFOA ranged from 0.85 to 13 ng/l and 2.0-260 ng/l. Lower concentrations were measured for perfluorobutane sulfonate (PFBS), perfluorohexane sulfonate (PFHxS), perfluorooctanesulfoamide (PFOSA), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorononaoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUnDA). Concentrations of several perfluorocarboxylic acids, including perfluorododecanoic acid (PFDoDA), perfluorotetradecanoic acid (PFTeDA), perfluorohexadecanoic acid (PFHxDA) and perfluorooctadecanoic acid (PFOcDA) were lower than the limits of quantification in all the samples analyzed. The highest concentrations of most PFCs were observed in water samples from the Yangtze River near Shanghai, the major industrial and financial centre in China. In addition, sampling locations in the lower reaches of the Yangtze River with a reduced flow rate might serve as a final sink for contaminants from the upstream river runoffs. Generally, PFOS was the dominant PFC found in samples from the Pearl River, while PFOA was the predominant PFC in water from the Yangtze River. Specifically, a considerable amount of PFBS (22.9-26.1% of total PFC analyzed) was measured in water collected near Nanjing, which indicates the presence of potential sources of PFBS in this part of China. Completely different PFC composition profiles were observed for samples from the Pearl River and the Yangtze River. This indicates the presence of dissimilar sources in these two regions. (c) 2007 Elsevier Ltd. All rights reserved.A total of 14 perfluorinated compounds (PFCs) were quantified in river water samples collected from tributaries of the Pearl River (Guangzhou Province, south China) and the Yangtze River (central China). Among the PFCs analyzed, perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) were the two compounds with the highest concentrations. PFOS concentrations ranged from 0.90 to 99 ng/1 and < 0.01-14 ng/1 in samples from the Pearl River and Yangtze River, respectively; whereas those for PFOA ranged from 0.85 to 13 ng/l and 2.0-260 ng/l. Lower concentrations were measured for perfluorobutane sulfonate (PFBS), perfluorohexane sulfonate (PFHxS), perfluorooctanesulfoamide (PFOSA), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorononaoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUnDA). Concentrations of several perfluorocarboxylic acids, including perfluorododecanoic acid (PFDoDA), perfluorotetradecanoic acid (PFTeDA), perfluorohexadecanoic acid (PFHxDA) and perfluorooctadecanoic acid (PFOcDA) were lower than the limits of quantification in all the samples analyzed. The highest concentrations of most PFCs were observed in water samples from the Yangtze River near Shanghai, the major industrial and financial centre in China. In addition, sampling locations in the lower reaches of the Yangtze River with a reduced flow rate might serve as a final sink for contaminants from the upstream river runoffs. Generally, PFOS was the dominant PFC found in samples from the Pearl River, while PFOA was the predominant PFC in water from the Yangtze River. Specifically, a considerable amount of PFBS (22.9-26.1% of total PFC analyzed) was measured in water collected near Nanjing, which indicates the presence of potential sources of PFBS in this part of China. Completely different PFC composition profiles were observed for samples from the Pearl River and the Yangtze River. This indicates the presence of dissimilar sources in these two regions. (c) 2007 Elsevier Ltd. All rights reserved

    Diamond-Based Thin Film Bulk Acoustic Wave Resonator for Biomedical Applications

    Get PDF
    Nowadays it is in constant growing the development of thin film bulk acoustic resonators. If the piezoelectric material is going to be implanted in the human body, an important requirement is the biocompatibility of the implant. In this regard, Aluminum Nitride (AlN) has emerged as an attractive alternative for use in biomedical MicroElectroMechanical Systems. Ultrananocrystalline Diamond (UNCD) is a promising material to be used in biomedical applications, due to its extraordinary mulifunctionality; it is exceptional for implantable medical devices requiring stringent biological performance. Since both UNCD and AlN films can be processed via photolithography processes used in microfabrication, the integration of UNCD and AlN films provides the bases for developing a new generation of biocompatible Bio-MEMS/NEMS. Research and development was conducted to produce implantable MEMS devices: Pt/piezoelectric AlN/Pt layer heterostructure was grown and patterned on the UNCD membrane with a Ti adhesion layer. By applying voltages between the top and bottom Pt electrodes layers the piezoelectric AlN layer is energized. The feasibility of the fabrication of biocompatible AlN/diamond-based FBAR structure has been demonstrated.Fil: Zalazar, Martin. Universidad Nacional de Entre Rios. Facultad de Ingenieria. Departamento de Bioingenieria; ArgentinaFil: Guarnieri, Fabio Ariel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico. Centro de InvestigaciĂłn de MĂ©todos Computacionales; Argentina. Universidad Nacional de Entre Rios. Facultad de Ingenieria. Departamento de Bioingenieria; Argentin

    Synthesis of Tin Nitride SnxNyNanowires by Chemical Vapour Deposition

    Get PDF
    Tin nitride (SnxNy) nanowires have been grown for the first time by chemical vapour deposition on n-type Si(111) and in particular by nitridation of Sn containing NH4Cl at 450 °C under a steady flow of NH3. The SnxNynanowires have an average diameter of 200 nm and lengths ≄5 ÎŒm and were grown on Si(111) coated with a few nm’s of Au. Nitridation of Sn alone, under a flow of NH3is not effective and leads to the deposition of Sn droplets on the Au/Si(111) surface which impedes one-dimensional growth over a wide temperature range i.e. 300–800 °C. This was overcome by the addition of ammonium chloride (NH4Cl) which undergoes sublimation at 338 °C thereby releasing NH3and HCl which act as dispersants thereby enhancing the vapour pressure of Sn and the one-dimensional growth of SnxNynanowires. In addition to the action of dispersion, Sn reacts with HCl giving SnCl2which in turn reacts with NH3leading to the formation of SnxNyNWs. A first estimate of the band-gap of the SnxNynanowires grown on Si(111) was obtained from optical reflection measurements and found to be ≈2.6 eV. Finally, intricate assemblies of nanowires were also obtained at lower growth temperatures

    Fabrication of Densely Packed AlN Nanowires by a Chemical Conversion of Al2O3Nanowires Based on Porous Anodic Alumina Film

    Get PDF
    Porous alumina film on aluminum with gel-like pore wall was prepared by a two-step anodization of aluminum, and the corresponding gel-like porous film was etched in diluted NaOH solution to produce alumina nanowires in the form of densely packed alignment. The resultant alumina nanowires were reacted with NH3and evaporated aluminum at an elevated temperature to be converted into densely packed aluminum nitride (AlN) nanowires. The AlN nanowires have a diameter of 15–20 nm larger than that of the alumina nanowires due to the supplement of the additional evaporated aluminum. The results suggest that it might be possible to prepare other aluminum compound nanowires through similar process

    Berkovich Nanoindentation on AlN Thin Films

    Get PDF
    Berkovich nanoindentation-induced mechanical deformation mechanisms of AlN thin films have been investigated by using atomic force microscopy (AFM) and cross-sectional transmission electron microscopy (XTEM) techniques. AlN thin films are deposited on the metal-organic chemical-vapor deposition (MOCVD) derived Si-doped (2 × 1017 cm−3) GaN template by using the helicon sputtering system. The XTEM samples were prepared by means of focused ion beam (FIB) milling to accurately position the cross-section of the nanoindented area. The hardness and Young’s modulus of AlN thin films were measured by a Berkovich nanoindenter operated with the continuous contact stiffness measurements (CSM) option. The obtained values of the hardness and Young’s modulus are 22 and 332 GPa, respectively. The XTEM images taken in the vicinity regions just underneath the indenter tip revealed that the multiple “pop-ins” observed in the load–displacement curve during loading are due primarily to the activities of dislocation nucleation and propagation. The absence of discontinuities in the unloading segments of load–displacement curve suggests that no pressure-induced phase transition was involved. Results obtained in this study may also have technological implications for estimating possible mechanical damages induced by the fabrication processes of making the AlN-based devices
    • 

    corecore