31 research outputs found

    Identification of Jun loss promotes resistance to histone deacetylase inhibitor entinostat through Myc signaling in luminal breast cancer

    Get PDF
    Abstract Background Based on promising phase II data, the histone deacetylase inhibitor entinostat is in phase III trials for patients with metastatic estrogen receptor-positive breast cancer. Predictors of sensitivity and resistance, however, remain unknown. Methods A total of eight cell lines and nine mouse models of breast cancer were treated with entinostat. Luminal cell lines were treated with or without entinostat at their IC50 doses, and MMTV/Neu luminal mouse tumors were untreated or treated with entinostat until progression. We investigated these models using their gene expression profiling by microarray and copy number by arrayCGH. We also utilized the network-based DawnRank algorithm that integrates DNA and RNA data to identify driver genes of resistance. The impact of candidate drivers was investigated in The Cancer Genome Atlas and METABRIC breast cancer datasets. Results Luminal models displayed enhanced sensitivity to entinostat as compared to basal-like or claudin-low models. Both in vitro and in vivo luminal models showed significant downregulation of Myc gene signatures following entinostat treatment. Myc gene signatures became upregulated on tumor progression in vivo and overexpression of Myc conferred resistance to entinostat in vitro. Further examination of resistance mechanisms in MMTV/Neu tumors identified a portion of mouse chromosome 4 that had DNA copy number loss and low gene expression. Within this region, Jun was computationally identified to be a driver gene of resistance. Jun knockdown in cell lines resulted in upregulation of Myc signatures and made these lines more resistant to entinostat. Jun-deleted samples, found in 17–23% of luminal patients, had significantly higher Myc signature scores that predicted worse survival. Conclusions Entinostat inhibited luminal breast cancer through Myc signaling, which was upregulated by Jun DNA loss to promote resistance to entinostat in our models. Jun DNA copy number loss, and/or high MYC signatures, might represent biomarkers for entinostat responsiveness in luminal breast cancer

    An open-label, phase 1 study evaluating safety, tolerability, and pharmacokinetics of linifanib (ABT-869) in Japanese patients with solid tumors

    Get PDF
    PURPOSE: This phase 1 study assessed the safety, tolerability, pharmacokinetics, and preliminary antitumor activity of linifanib in Japanese patients with advanced solid tumors. METHODS: Patients were assigned to one of four sequential cohorts (0.05, 0.10, 0.20, or 0.25 mg/kg) of oral, once-daily linifanib on a 21-day cycle. Adverse events (AEs) were assessed per common terminology criteria for adverse events v3.0; tumor responses were assessed by response evaluation criteria in solid tumors. RESULTS: Eighteen patients were enrolled. Eleven (61%) received ≥3 prior therapies. Dose-limiting toxicities were Grade 3 ALT increase (0.10 mg/kg linifanib) and Grade 1 T-wave inversion (0.25 mg/kg linifanib) requiring dose interruption for >7 days and discontinuation on day 29. The most common linifanib-related AE was hypertension. Other significant treatment-related AEs included proteinuria, fatigue, and palmar-plantar erythrodysaesthesia. Linifanib pharmacokinetics were dose-proportional across 0.10–0.25 mg/kg. Two patients (11.1%) had confirmed partial responses, 12 had a best response of stable disease (11 had stable disease for ≥12 weeks), and four patients were not evaluable due to incomplete data. Four patients (lung cancer, breast cancer, thymic cancer, sarcoma) have continued linifanib for ≥48 weeks (range, 48–96+ weeks). CONCLUSION: Linifanib was well tolerated with promising preliminary clinical activity in Japanese patients. Later-phase global studies examining linifanib efficacy will include Japanese patients

    FOXA1 and adaptive response determinants to HER2 targeted therapy in TBCRC 036

    Get PDF
    Inhibition of the HER2/ERBB2 receptor is a keystone to treating HER2-positive malignancies, particularly breast cancer, but a significant fraction of HER2-positive (HER2+) breast cancers recur or fail to respond. Anti-HER2 monoclonal antibodies, like trastuzumab or pertuzumab, and ATP active site inhibitors like lapatinib, commonly lack durability because of adaptive changes in the tumor leading to resistance. HER2+ cell line responses to inhibition with lapatinib were analyzed by RNAseq and ChIPseq to characterize transcriptional and epigenetic changes. Motif analysis of lapatinib-responsive genomic regions implicated the pioneer transcription factor FOXA1 as a mediator of adaptive responses. Lapatinib in combination with FOXA1 depletion led to dysregulation of enhancers, impaired adaptive upregulation of HER3, and decreased proliferation. HER2-directed therapy using clinically relevant drugs (trastuzumab with or without lapatinib or pertuzumab) in a 7-day clinical trial designed to examine early pharmacodynamic response to antibody-based anti-HER2 therapy showed reduced FOXA1 expression was coincident with decreased HER2 and HER3 levels, decreased proliferation gene signatures, and increased immune gene signatures. This highlights the importance of the immune response to anti-HER2 antibodies and suggests that inhibiting FOXA1-mediated adaptive responses in combination with HER2 targeting is a potential therapeutic strategy

    Identification of Jun loss promotes resistance to histone deacetylase inhibitor entinostat through Myc signaling in luminal breast cancer

    Get PDF
    Abstract Background Based on promising phase II data, the histone deacetylase inhibitor entinostat is in phase III trials for patients with metastatic estrogen receptor-positive breast cancer. Predictors of sensitivity and resistance, however, remain unknown. Methods A total of eight cell lines and nine mouse models of breast cancer were treated with entinostat. Luminal cell lines were treated with or without entinostat at their IC50 doses, and MMTV/Neu luminal mouse tumors were untreated or treated with entinostat until progression. We investigated these models using their gene expression profiling by microarray and copy number by arrayCGH. We also utilized the network-based DawnRank algorithm that integrates DNA and RNA data to identify driver genes of resistance. The impact of candidate drivers was investigated in The Cancer Genome Atlas and METABRIC breast cancer datasets. Results Luminal models displayed enhanced sensitivity to entinostat as compared to basal-like or claudin-low models. Both in vitro and in vivo luminal models showed significant downregulation of Myc gene signatures following entinostat treatment. Myc gene signatures became upregulated on tumor progression in vivo and overexpression of Myc conferred resistance to entinostat in vitro. Further examination of resistance mechanisms in MMTV/Neu tumors identified a portion of mouse chromosome 4 that had DNA copy number loss and low gene expression. Within this region, Jun was computationally identified to be a driver gene of resistance. Jun knockdown in cell lines resulted in upregulation of Myc signatures and made these lines more resistant to entinostat. Jun-deleted samples, found in 17–23% of luminal patients, had significantly higher Myc signature scores that predicted worse survival. Conclusions Entinostat inhibited luminal breast cancer through Myc signaling, which was upregulated by Jun DNA loss to promote resistance to entinostat in our models. Jun DNA copy number loss, and/or high MYC signatures, might represent biomarkers for entinostat responsiveness in luminal breast cancer

    I-Boost: an integrative boosting approach for predicting survival time with multiple genomics platforms

    No full text
    Abstract We propose a statistical boosting method, termed I-Boost, to integrate multiple types of high-dimensional genomics data with clinical data for predicting survival time. I-Boost provides substantially higher prediction accuracy than existing methods. By applying I-Boost to The Cancer Genome Atlas, we show that the integration of multiple genomics platforms with clinical variables improves the prediction of survival time over the use of clinical variables alone; gene expression values are typically more prognostic of survival time than other genomics data types; and gene modules/signatures are at least as prognostic as the collection of individual gene expression data

    Response to Dabrafenib and Trametinib of a Patient with Metaplastic Breast Carcinoma Harboring a BRAF V600E Mutation

    No full text
    Background. Metaplastic breast carcinomas are rare and carry poor prognoses. They are also more aggressive than other breast cancers and are known for their resistance to chemotherapy. Prolonged treatment with dabrafenib and trametinib is a therapy for malignant melanoma that improves the progression-free survival and overall survival. Such molecular-targeted therapies are also being developed for cancers with BRAF mutation, a driver of malignant melanoma. Case Presentation. A 57-year-old woman with metaplastic breast cancer and chemotherapy-refractory massive pleural effusion. After contained anthracycline regimen failure, her breast cancer progressed to an advanced stage. We ordered next-generation sequencing- (NGS-) based tumor molecular profiling from core needle biopsy of the breast. The NGS report indicated the presence of a BRAF V600E mutation. After initiation of dabrafenib and trametinib, her symptom and the pleural effusion were decreased. The first assessment of CT scans showed a decreased pleural effusion and shrunken subcutaneous lesions. Approximately 2 weeks later, a new lesion appeared. She died from 12 weeks after initiation of dabrafenib and trametinib treatment. Conclusion. To the best of our knowledge, this is the first report of BRAF mutation breast cancer treated with dabrafenib and trametinib and it heralds the possibility of targeted therapy for rare breast cancers
    corecore