68 research outputs found

    Neuropeptide signaling through neurokinin-1 and neurokinin-2 receptors augments antigen presentation by human dendritic cells

    Get PDF
    Background: Neurotransmitters, including substance P (SP) and neurokinin A (NKA), are widely distributed in both the central and peripheral nervous system and their receptors, neurokinin-1 receptor (NK1R) and neurokinin-2 receptor (NK2R), are expressed on immune cells. However, the role of the NKA-NK2R axis in immune responses relative to the SP-NK1R signaling cascade has not been elucidated. Objective: We sought to examine the effect of neuropeptide signaling through NK1Rand NK2R on antigen presentation by dendritic cells (DCs) and the subsequent activation of effector Th cells. Methods: Expression levels of NK1R, NK2R, HLA-class II and costimulatory molecules of human MoDCs and cytokine production by birch pollen antigen-specific CD4+ T cells cocultured with MoDCs in the presence of NK1R and NK2R antagonists were evaluated by quantitative RT-PCR, flow cytometry or ELISA. NK1R and NK2R expression in the lung of patients with asthma and hypersensitivity pneumonitis was evaluated by immunohistochemistry. Results: Human MoDCs significantly upregulated NK2R and NK1R expression in response to poly I:C stimulation in a STAT1-dependent manner. Both NK2R and NK1R were expressed on alveolar macrophages and lung DCs from patients with asthma and pneumonitis hypersensitivity. Surface expression levels of HLA-class II and costimulatory molecules on DCs were modulated by NK1R or NK2R antagonists. Activation of birch pollen-derived antigen-specific CD4+ T cells and their production of cytokines including IL-4 and IFN-γ as well as IL-12 production by MoDCs, were suppressed by blocking NK1R or NK2R after in vitro antigen stimulation. Conclusions: NK1R- and NK2R-mediated neuropeptide signaling promotes both innate and acquired immune responses through activation of human DCs

    Anti-NXP2 autoantibodies in adult patients with idiopathic inflammatory myopathies: Possible association with malignancy

    Get PDF
    Objectives: Myositis-specific autoantibodies (MSAs) are useful tools for identifying clinically homogeneous subsets and predicting prognosis of patients with idiopathic inflammatory myopathies (IIM) including polymyositis (PM) and dermatomyositis (DM). Recent studies have shown that anti-NXP2 antibody (Ab) is a major MSA in juvenile dermatomyositis (JDM). In this study the frequencies and clinical associations of anti-NXP2 Ab were evaluated in adult patients with IIM. Methods: Clinical data and serum samples were collected from 507 adult Japanese patients with IIM (445 with DM and 62 with PM). Eleven patients with JDM, 108 with systemic lupus erythematosus, 433 with systemic sclerosis and 124 with idiopathic pulmonary fibrosis were assessed as disease controls. Serum was examined for anti-NXP2 Ab by immunoprecipitation and western blotting using polyclonal anti-NXP2 Ab. Results: Seven patients (1.6%) with adult DM and one (1.6%) with adult PM were positive for anti-NXP2 Ab. Except for two patients with JDM, none of the disease controls were positive for this autoantibody. Among eight adult patients with IIM, three had internal malignancies within 3 years of diagnosis of IIM. Another patient with DM also had a metastatic cancer at the diagnosis. All of the carcinomas were at an advanced stage (stage IIIb-IV). Conclusions: While less common than in juvenile IIM, anti-NXP2 Ab was found in adult IIM. Anti-NXP2 Ab may be associated with adult IIM with malignancy

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    Chronological Change in Pulmonary Vascular Response to Hypoxia in Hepatopulmonary Syndrome

    Get PDF
    We here present a case with hepatopulmonary syndrome (HPS) where spontaneous resolution of severe hypoxaemia occurred with the development of pulmonary hypertension over several years after the initial diagnosis of HPS. The pulmonary vascular responses to hypoxia examined before and after the spontaneous resolution of HPS confirmed that the pathogenesis of HPS could be functional and reversible in nature. To the best of our knowledge, this is the first report demonstrating a remarkable change in the pulmonary vascular response to hypoxia before and after the spontaneous resolution of hypoxaemia in HPS
    corecore