1,435 research outputs found

    Construction of wedge-local nets of observables through Longo-Witten endomorphisms. II

    Get PDF
    In the first part, we have constructed several families of interacting wedge-local nets of von Neumann algebras. In particular, there has been discovered a family of models based on the endomorphisms of the U(1)-current algebra of Longo-Witten. In this second part, we further investigate endomorphisms and interacting models. The key ingredient is the free massless fermionic net, which contains the U(1)-current net as the fixed point subnet with respect to the U(1) gauge action. Through the restriction to the subnet, we construct a new family of Longo-Witten endomorphisms on the U(1)-current net and accordingly interacting wedge-local nets in two-dimensional spacetime. The U(1)-current net admits the structure of particle numbers and the S-matrices of the models constructed here do mix the spaces with different particle numbers of the bosonic Fock space.Comment: 33 pages, 1 tikz figure. The final version is available under Open Access. CC-B

    On the equivalence of two deformation schemes in quantum field theory

    Get PDF
    Two recent deformation schemes for quantum field theories on the two-dimensional Minkowski space, making use of deformed field operators and Longo-Witten endomorphisms, respectively, are shown to be equivalent.Comment: 14 pages, no figure. The final version is available under Open Access. CC-B

    Scalar fields on SL(2,R) and H^2 x R geometric spacetimes and linear perturbations

    Full text link
    Using appropriate harmonics, we study the future asymptotic behavior of massless scalar fields on a class of cosmological vacuum spacetimes. The spatial manifold is assumed to be a circle bundle over a higher genus surface with a locally homogeneous metric. Such a manifold corresponds to the SL(2,R)-geometry (Bianchi VIII type) or the H^2 x R-geometry (Bianchi III type). After a technical preparation including an introduction of suitable harmonics for the circle-fibered Bianchi VIII to separate variables, we derive systems of ordinary differential equations for the scalar field. We present future asymptotic solutions for these equations in a special case, and find that there is a close similarity with those on the circle-fibered Bianchi III spacetime. We discuss implications of this similarity, especially to (gravitational) linear perturbations. We also point out that this similarity can be explained by the "fiber term dominated behavior" of the two models.Comment: 23 pages, no figures, to be published in Class. Quant. Gravi

    Ground state representations of loop algebras

    Full text link
    Let g be a simple Lie algebra, Lg be the loop algebra of g. Fixing a point in S^1 and identifying the real line with the punctured circle, we consider the subalgebra Sg of Lg of rapidly decreasing elements on R. We classify the translation-invariant 2-cocycles on Sg. We show that the ground state representation of Sg is unique for each cocycle. These ground states correspond precisely to the vacuum representations of Lg.Comment: 22 pages, no figur

    A model independent and rephase invariant parametrization of CP violation

    Get PDF
    The phenomenological description of the neutral B meson system is proposed in terms of the fundamental CP-violating observables and within a rephasing invariant formalism. This generic formalism can select the time-dependent and time-integrated asymmetries which provide the basic tools to discriminate the different kinds of possible CP-violating effects in dedicated experimental B-meson facilities.Comment: 19 pages, Plain Te

    A Universal Intrinsic Scale of Hole Concentration for High-Tc Cuprates

    Get PDF
    We have measured thermoelectric power (TEP) as a function of hole concentration per CuO2 layer, Ppl, in Y1-xCaxBa2Cu3O6 (Ppl = x/2) with no oxygen in the Cu-O chain layer. The room-temperature TEP as a function of Ppl, S290(Ppl), of Y1-xCaxBa2Cu3O6 behaves identically to that of La2-zSrzCuO4 (Ppl = z). We argue that S290(Ppl) represents a measure of the intrinsic equilibrium electronic states of doped holes and, therefore, can be used as a common scale for the carrier concentrations of layered cuprates. We shows that the Ppl determined by this new universal scale is consistent with both hole concentration microscopically determined by NQR and the hole concentration macroscopically determined by the Cu valency. We find two characteristic scaling temperatures, TS* and TS2*, in the TEP vs. temperature curves that change systematically with doping. Based on the universal scale, we uncover a universal phase diagram in which almost all the experimentally determined pseudogap temperatures as a function of Ppl fall on two common curves; upper pseudogap temperature defined by the TS* versus Ppl curve and lower pseudogap temperature defined by the TS2* versus Ppl curve. We find that while pseudogaps are intrinsic properties of doped holes of a single CuO2 layer for all high-Tc cuprates, Tc depends on the number of layers, therefore the inter-layer coupling, in each individual system.Comment: 11 pages, 9 figures, accepted for publication in Physical Review

    Democratic Neutrino Mixing and Radiative Corrections

    Get PDF
    The renormalization effect on a specific ansatz of lepton mass matrices, arising naturally from the breaking of flavor democracy for charged leptons and that of mass degeneracy for light neutrinos, is studied from a superhigh energy scale M_0 \sim 10^{13} GeV to the electroweak scale in the framework of the minimal supersymmetric standard model. We find that the democratic neutrino mixing pattern obtained from this ansatz may in general be instable against radiative corrections. With the help of similar flavor symmetries we prescribe a slightly different scheme of lepton mass matrices at the scale M_0, from which the democratic mixing pattern of lepton flavors can be achieved, after radiative corrections, at the experimentally accessible scales.Comment: RevTex 8 pages. Phys. Rev. D (in printing

    Asymptotic completeness in a class of massless relativistic quantum field theories

    Get PDF
    This paper presents the first examples of massless relativistic quantum field theories which are interacting and asymptotically complete. These two-dimensional theories are obtained by an application of a deformation procedure, introduced recently by Grosse and Lechner, to chiral conformal quantum field theories. The resulting models may not be strictly local, but they contain observables localized in spacelike wedges. It is shown that the scattering theory for waves in two dimensions, due to Buchholz, is still valid under these weaker assumptions. The concepts of interaction and asymptotic completeness, provided by this theory, are adopted in the present investigation.Comment: 15 pages, LaTeX. As appeared in Communications in Mathematical Physic

    Locally U(1)*U(1) Symmetric Cosmological Models: Topology and Dynamics

    Full text link
    We show examples which reveal influences of spatial topologies to dynamics, using a class of spatially {\it closed} inhomogeneous cosmological models. The models, called the {\it locally U(1)Ă—\timesU(1) symmetric models} (or the {\it generalized Gowdy models}), are characterized by the existence of two commuting spatial {\it local} Killing vectors. For systematic investigations we first present a classification of possible spatial topologies in this class. We stress the significance of the locally homogeneous limits (i.e., the Bianchi types or the `geometric structures') of the models. In particular, we show a method of reduction to the natural reduced manifold, and analyze the equivalences at the reduced level of the models as dynamical models. Based on these fundamentals, we examine the influence of spatial topologies on dynamics by obtaining translation and reflection operators which commute with the dynamical flow in the phase space.Comment: 32 pages, 1 figure, LaTeX2e, revised Introduction slightly. To appear in CQ

    Mathematics Indicates That an HIV-Style Strategy Could Be Applied to Manage the Coronavirus

    Full text link
    We have learned to live with many potentially deadly viruses for which there is no vaccine, no immunity, and no cure. We do not live in constant fear of these viruses, instead, we have learned how to outsmart them and reduce the harm they cause. A new mathematical model that combines the spread of diseases that do not confer immunity together with the evolution of human behaviors indicates that we may be able to fight new diseases with the same type of strategy we use to fight viruses like HIV.Comment: This article is available open access online here: https://link.springer.com/chapter/10.1007%2F16618_2020_2
    • …
    corecore