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Abstract

This paper presents the first examples of massless relativistic quantum
field theories which are interacting and asymptotically complete. These two-
dimensional models are obtained by an application of a deformation proce-
dure, introduced recently by Grosse and Lechner, to chiral conformal quan-
tum field theories. The resulting models may not be strictly local, but they
contain observables localized in spacelike wedges.

1 Introduction
Interpretation of quantum field theories in terms of particles is a long-
standing fundamental problem. The last two decades witnessed significant
progress on this issue, both on the side of structural analysis [Bu90, Po04.1,
Po04.2, Dy05, Dy09] and in the study of concrete models [Sp97, DG99,
FGS04, Le08]. In particular, the first examples of local, relativistic quantum
field theories, which are interacting and asymptotically complete, have been
constructed in [Le08]. As this class contains only massive models, the ques-
tion of asymptotic completeness in the presence of massless particles is open
to date in the local, relativistic framework. This can be partly attributed
to the infamous infrared problem, which hinders rigorous construction and
analysis of interacting massless theories by traditional methods (see however
[CRW85, BFM04]). It is therefore remarkable that more recent constructive
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tools, developed in [BLS10], give rise to massless models which are asymp-
totically complete and interacting. We exhibit such theories in the present
work.

We recall that a new class of relativistic quantum field theories, including
both massive and massless models, has been obtained recently by a certain
deformation procedure akin to the Rieffel deformation [GL08, BS08, BLS10,
DLM10]. These theories are wedge-local i.e. observables can be localized
in (unbounded) wedge-shaped regions extending in spacelike directions. In
the massive case this remnant of locality suffices for a canonical construc-
tion of the two-body scattering matrix, as shown in [BBS01]. Exploiting
this fact, it was demonstrated in [GL08, BS08] that the deformed theory is
interacting even if the original theory is not. As in general only two-body
scattering states are available, it may seem that the problem of asymptotic
completeness cannot be addressed in the framework of wedge-local theories.
However, in the case of two-dimensional massless theories such a conclusion
would be pre-mature, as we demonstrate in this paper.

Our first task is to provide a scattering theory for such models. We
recall that for local two-dimensional theories of massless excitations a scat-
tering theory was developed in [Bu75]. The basic building blocks of this
construction are the subspaces H+ and H− in the physical Hilbert space
H, corresponding to the right and left branch of the lightcone in momen-
tum space. These subspaces carry representations of the Poincaré group
which are in general highly reducible. Thus vectors Ψ± ∈ H± do not de-
scribe particles in the Wigner sense, but rather composite objects, called
in [Bu75] ’waves’. In view of their dispersionless motion, a composition of
several waves travelling in the same direction (say elements of H+), gives
rise to another wave from H+. Thus it suffices to consider scattering states

Ψ+

out
× Ψ− (resp. Ψ+

in
× Ψ−) which describe two waves travelling in the op-

posite directions in the remote future (resp. past). They span the subspaces
Hout (resp. Hin) of the outgoing (resp. incoming) states. The scattering

matrix S : Hout → Hin can be defined as an isometry mapping Ψ+

out
× Ψ−

into Ψ+

in
×Ψ−. If Hout = Hin = H, then we say that the theory is asymptot-

ically complete. As we will show, there exists a large class of non-interacting
massless theories in two-dimensional spacetime which have this property: it
includes all chiral conformal quantum field theories.

In the light of the above discussion, it is not surprising that the scattering
theory from [Bu75] can be generalized to the wedge-local context. Indeed,
observables localized in two opposite spacelike wedges suffice to separate two
waves travelling in opposite directions. We demonstrate this fact in Section 2
after some introductory remarks on wedge-local quantum field theories. In
Section 3 we express the scattering matrix Sκ of the deformed theory (with
a deformation parameter κ), by the scattering matrix S of the original one.
We obtain

Sκ = eiκM
2
S, (1)

where M is the mass operator. Hence, similarly as in the massive case, the
deformed theory is interacting, even if the original theory is not. Moreover,

2



the property of asymptotic completeness is preserved by the deformation
procedure. Thus deformations of chiral conformal field theories give rise to
wedge-local theories which are interacting and asymptotically complete, as
we show in Section 4. We summarize our results in Section 5, where also
some open questions are discussed.

2 Scattering theory
A convenient framework for a study of wedge-local theories is provided by
the concept of a Borchers triple [Bo92]. We recall that a Borchers triple
(R, U,Ω), (relative to the wedge W = {x = (x0, x1) ∈ R2 |x1 ≥ |x0| }),
consists of:

(a) a von Neumann algebra R ⊂ B(H),

(b) a strongly continuous unitary representation U of R2 on H, whose
spectrum spU is contained in the closed forward lightcone V+ = { p =
(p0, p1) ∈ R2 | p0 ≥ |p1| } and which satisfies αx(R) ⊂ R, for x ∈ W,
where αx( · ) = U(x) · U(x)−1,

(c) a unit vector Ω ∈ H which is invariant under the action of U and is
cyclic and separating for R. It will be called the vacuum vector.

One interprets A(W) := R as the algebra of all observables localized in
the wedge W. In view of (c), one can apply to (R,Ω) the Tomita-Takesaki
theory and we denote by (∆, J) the modular operator and the conjugation.
As shown in [Bo92], with the help of the modular objects one can construct
an (anti-)unitary representation λ→ Ũ(λ) of the proper Poincaré group P+

which extends the original representation of translations. In particular, J
implements the spacetime reflection, i.e.

JU(x)J = U(−x), x ∈ R2. (2)

Thus with any wedge λW one can associate the algebra of observables
A(λW) = Ũ(λ)RŨ(λ)−1. Since, by the Tomita-Takesaki theory, JRJ = R′,
the resulting net is wedge-local i.e A((λW)′) = A(λW)′, where (λW)′ is the
causal complement of λW and a prime over an algebra denotes the commu-
tant. Hence this net gives rise to a (two-dimensional) wedge-local, relativistic
quantum field theory. See [Bo92, Fl98] for proofs of the above statements
and [BLS10] for a more detailed overview.

Let (H,P ) be the generators of U i.e. U(x0, x1) = eiHx
0−iPx1 . We

set H± = ker (H ∓P ) and denote by P± the corresponding projections. We
assume thatH+∩H− = [cΩ] i.e. Ω is the unique (up to a phase) vector which
is invariant under translations. This implies that H+ ∩ [cΩ]⊥ is orthogonal
to H− ∩ [cΩ]⊥. We assume that the latter two subspaces are non-trivial, to
ensure that the theory contains massless excitations. Let us now describe
briefly their collision theory. The construction follows closely [Bu75].

For any F ∈ B(H) and x ∈ R2 we denote F (x) := αx(F ) and define the
sequences of operators

F±(hT ) =
∫
dt hT (t)F (t±) with t± = (t,±t), (3)
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where hT (t) = |T |−εh(|T |−ε(t − T )), 0 < ε < 1 and h ∈ C∞0 (R) is a non-
negative, symmetric function s.t.

∫
dt h(t) = 1. With the help of these

approximating sequences we construct the asymptotic fields corresponding
to the wedge W.

Lemma 2.1 Let F ∈ R. Then the limits

Φout
+ (F ) := s- lim

T→∞
F+(hT ), Φin

−(F ) := s- lim
T→−∞

F−(hT ), (4)

exist and are elements of R. They depend only on the respective vectors
Φout

+ (F )Ω = P+FΩ, Φin
−(F )Ω = P−FΩ and satisfy

(a) Φout
+ (F )H+ ⊂ H+, Φin

−(F )H− ⊂ H−,
(b) αx(Φout

+ (F )) = Φout
+ (αx(F )), αx(Φin

−(F )) = Φin
−(αx(F )) for x ∈ W.

Proof. Let us consider the first limit in (4). Since there holds the estimate
‖F+(hT )‖ ≤ ‖F‖

∫
dt |h(t)|, it suffices to show the convergence on the dense

set of vectors R′Ω. First, one checks using the mean ergodic theorem

s- lim
T→∞

F+(hT )Ω = P+FΩ. (5)

In view of part (b) of the definition of the Borchers triple and the fact that
t+ ∈ W there holds F+(hT ) ∈ R for T sufficiently large. Hence, for any
F ′ ∈ R′,

s- lim
T→∞

F+(hT )F ′Ω = F ′P+FΩ, (6)

which proves convergence. Since R is a von Neumann algebra, the limit
Φout

+ (F ) is an element of R. Since Ω is separating for R, this operator
depends only on Φout

+ (F )Ω = P+FΩ.
The second part of (4) is proven analogously. Property (a) follows by

application of the mean ergodic theorem, similarly as in (5). Property (b) is
obvious from the definitions of Φout

+ , Φin
− . �

Let us now define the asymptotic fields corresponding to the wedge W ′.
Keeping in mind that JR′J = R, we set for any F ′ ∈ R′

Φin
+(F ′) := JΦout

+ (JF ′J)J, Φout
− (F ′) := JΦin

−(JF ′J)J. (7)

Making use of formula (2), we easily obtain the following counterpart of
Lemma 2.1.

Lemma 2.2 Let F ′ ∈ R′. Then there holds

Φin
+(F ′) = s- lim

T→−∞
F ′+(hT ), Φout

− (F ′) = s- lim
T→∞

F ′−(hT ). (8)

These operators depend only on the respective vectors Φin
+(F ′)Ω = P+F

′Ω,
Φout
− (F ′)Ω = P−F

′Ω and satisfy

(a) Φin
+(F ′)H+ ⊂ H+, Φout

− (F ′)H− ⊂ H−,
(b) αx(Φin

+(F ′))=Φin
+(αx(F ′)), αx(Φout

− (F ′))=Φout
− (αx(F ′)) for x ∈ W ′.
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Let us now proceed to the construction of scattering states. Clustering
properties of the asymptotic fields are of importance here. Proceeding as in
[Bu75], we note that for any F,G ∈ R, F ′, G′ ∈ R′ there holds

(Φout
+ (F )Φout

− (F ′)Ω|Φout
+ (G)Φout

− (G′)Ω)
= (Φout

+ (G)∗Φout
+ (F )Ω|Φout

− (F ′)∗Φout
− (G′)Ω)

= (Φout
+ (F )Ω|Φout

+ (G)Ω)(Φout
− (F ′)Ω|Φout

− (G′)Ω), (9)

where in the last step we made use of Lemma 2.1 (a), Lemma 2.2 (a) and of
the fact that H+∩ [cΩ]⊥ is orthogonal to H−∩ [cΩ]⊥. Now for any Ψ+ ∈ H+,
(resp. Ψ− ∈ H−) we choose, with the help of property (c) of the Borchers
triple, a sequence {Fn}n∈N of elements of R (resp. a sequence {F ′n}n∈N of
elements of R′) s.t. s- lim

n→∞
P+FnΩ = Ψ+ (resp. s- lim

n→∞
P+F

′
nΩ = Ψ−). By

relation (9), the limit

Ψ+

out
× Ψ− := s- lim

n→∞
Φout

+ (Fn)Φout
− (F ′n)Ω (10)

exists and does not depend on the choice of the sequences within the above
restrictions. We will call it the outgoing scattering state. Next, we define
the incoming scattering states as follows

Ψ+

in
×Ψ− := J((JΨ+)

out
× (JΨ−)). (11)

This definition is meaningful, since relation (2) gives JH+ ⊂ H+ and JH− ⊂
H−. It is easily seen, that for suitable sequences {Gn}n∈N (resp. {G′n}n∈N)
of elements of R (resp. of R′), there holds

Ψ+

in
×Ψ− = s- lim

n→∞
Φin

+(G′n)Φin
−(Gn)Ω, (12)

similarly as in (10). The states constructed above have the following basic
properties which justify their interpretation as scattering states:

Lemma 2.3 For any Ψ±,Ψ′± ∈ H± there holds:

(a) (Ψ+

out
× Ψ−,Ψ′+

out
× Ψ′−) = (Ψ+,Ψ′+)(Ψ−,Ψ′−),

(b) U(x)(Ψ+

out
× Ψ−) = (U(x)Ψ+)

out
× (U(x)Ψ−), for x ∈ R2.

Analogous relations hold for the incoming scattering states.

Proof. Part (a) follows immediately from relation (9). As for part (b), for
any x ∈ R2 we can choose such y ∈ W and y′ ∈ W ′ that x + y ∈ W and
x+ y′ ∈ W ′. We choose a sequence {Fn}n∈N of elements of R and {F ′n}n∈N
of elements of R′ s.t. s- lim

n→∞
P+Fn(y)Ω = Ψ+ and s- lim

n→∞
P−F

′
n(y′)Ω = Ψ−.

Then

U(x)(Ψ+

out
× Ψ−) = s- lim

n→∞
αx(Φout

+ (Fn(y)))αx(Φout
− (F ′n(y′)))Ω

= s- lim
n→∞

αx+y(Φout
+ (Fn))αx+y′(Φout

− (F ′n))Ω

= s- lim
n→∞

Φout
+ (Fn(x+ y))Φout

− (F ′n(x+ y′))Ω, (13)
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where we applied Lemma 2.1 (b) and Lemma 2.2 (b) in the second and third

step. We note that the last state on the r.h.s. above is just (U(x)Ψ+)
out
×

(U(x)Ψ−), completing the proof of (b). The statement concerning the in-
coming states follows immediately from the properties of the outgoing states
and from definition (11). �

After this preparation, we introduce the scattering subspaces

Hin = H+

in
×H− and Hout = H+

out
× H−, (14)

which are spanned by the respective scattering states. In view of Lemma 2.3,
they are canonically isomorphic to the tensor product H+ ⊗H−. Similarly
as in [Bu75], we define the scattering operator S : Hout → Hin, extending
by linearity the following relation:

S(Ψ+

out
× Ψ−) = Ψ+

in
×Ψ−. (15)

In view of Lemma 2.3 this map is an isometry and it is invariant under trans-
lations. If S differs from (a constant multiple of) the identity transformation
on Hin, then we say that the theory is interacting. If Hin = Hout = H, then
we say that the theory is asymptotically complete. In the next two sections
we will exhibit a class of theories which have both properties.

To conclude this section, we point out that the asymptotic fields form new
Borchers triples, which are non-interacting and asymptotically complete. In
view of Lemma 2.1 (a) and Lemma 2.2 (a), we can define the following von
Neumann algebras acting on Has := H+ ⊗H−:

Ras := {Φout
+ (F )|H+ ⊗ Φin

−(G)|H− |F,G ∈ R}′′, (16)
(R′)as := {Φin

+(F ′)|H+ ⊗ Φout
− (G′)|H− |F ′, G′ ∈ R′ }′′. (17)

Moreover, we set Uas(x) = U(x)|H+ ⊗ U(x)|H− and Ωas = Ω ⊗ Ω. Clearly,
there holds

spUas = spU |H+ + spU |H− ⊂ V+. (18)

and Ωas is the unique (up to a phase) vector which is invariant under the
action of Uas. Since Ωas is cyclic for Ras and (R′)as, and (R′)as ⊂ (Ras)′,
we obtain that (Ras, Uas,Ωas) is a Borchers triple w.r.t. W. We call it the
asymptotic Borchers triple of (R,U,Ω). It has the following properties:

Proposition 2.4 The Borchers triple (Ras, Uas,Ωas) defined above gives
rise to an asymptotically complete and non-interacting wedge-local quantum
field theory. Moreover, spUas = V+.

Proof. Making use of the fact that (R′)as ⊂ (Ras)′, we obtain the equalities

Φout
+ (Φout

+ (F )|H+ ⊗ I)Ωas = P+FΩ⊗ Ω, (19)
Φout
− (I ⊗ Φout

− (F ′)|H−)Ωas = Ω⊗ P−F ′Ω, (20)

valid for any F ∈ R, F ′ ∈ R′. Thus we conclude that Has
+ ⊃ H+ ⊗ [cΩ]

and Has
− ⊃ [cΩ] ⊗ H−. Let Ψ± ∈ H± and let {Fn}n∈N (resp. {F ′n}n∈N)
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be a sequence of elements of R (resp. R′) s.t. s- lim
n→∞

P+FnΩ = Ψ+ (resp.
s- lim
n→∞

P−F
′
nΩ = Ψ−). Then we get

(Ψ+ ⊗ Ω)
out
× (Ω⊗Ψ−)

= s- lim
n

Φout
+ (Φout

+ (Fn)|H+ ⊗ I)Φout
− (I ⊗ Φout

− (F ′n)|H−)Ωas

= Ψ+ ⊗Ψ−. (21)

By an analogous argument, we verify that

(Ψ+ ⊗ Ω)
in
× (Ω⊗Ψ−) = Ψ+ ⊗Ψ−. (22)

We infer from equalities (21) and (22) that (Has)out = (Has)in = Has

(i.e. asymptotic completeness holds) and S = I (i.e. the theory is non-
interacting).

To justify the statement concerning the spectrum of Uas, we recall that
H+ ∩ [cΩ]⊥ and H− ∩ [cΩ]⊥ are assumed to be non-trivial. Consequently,
spU |H+ and spU |H− have some non-zero elements. From the existence of
the unitary representation of the Poincaré group Ũ , associated with the
triple (R, U,Ω), we conclude that these two spectra coincide with the right
and left branch of the lightcone, respectively. Since sp (U |H+ ⊗ U |H−) =
spU |H+ + spU |H− , the statement follows. �

3 Deformations and interaction
In the previous section we showed that for any Borchers triple in two-
dimensional spacetime (with a unique vacuum state) we can canonically
construct the scattering matrix S which describes collisions of massless par-
ticles. In this section we consider a class of deformations of Borchers triples,
introduced in [BLS10] and study their effect on the scattering matrix. Simi-
larly as in the massive case [GL08, BS08], the deformed theory turns out to
be interacting, even if the original one is not. Moreover, we show that the
property of asymptotic completeness is preserved under these deformations.

Let us recall briefly the deformation procedure of [BLS10]. Let (R, U,Ω)
be a Borchers triple w.r.t. the wedge W. We denote by R∞ the subset of
elements of R which are smooth under the action of α in the norm topology.
(It is easy to see that R∞ is a dense subalgebra of R in the strong operator
topology). Let D be the dense domain of vectors which are smooth w.r.t.
to the action of U . Then, as shown in [BLS10], one can define for any F ∈
R∞, and a matrix Q, antisymmetric w.r.t. the Minkowski scalar product
(x, y)→ xy, the warped convolution

FQ =
∫
dE(x)αQx(F ) := lim

ε↘0
(2π)−2

∫
d2x d2y f(εx, εy)e−ixyαQx(F )U(y)

(23)
where dE is the spectral measure of U and f ∈ S(R2×R2) is s.t. f(0, 0) = 1.
The limit exists in the strong sense on vectors from D and is independent of
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the function f within the above restrictions. We set

RQ := {FQ |F ∈ R∞ }′′. (24)

Let us now restrict attention to the following family of antisymmetric ma-
trices

Qκ =
(

0 κ
κ 0

)
, (25)

where κ > 0, and recall the following result from [BLS10]:

Theorem 3.1 If (R, U,Ω) is a Borchers triple w.r.t. W, then (RQκ , U,Ω)
is also a Borchers triple w.r.t. W. Moreover, (R′)−Qκ ⊂ (RQκ)′.

Our goal is to express the scattering matrix Sκ of the deformed theory
(RQκ , U,Ω) by the scattering matrix S of the original theory (R, U,Ω). To
this end, we prove the following fact.

Theorem 3.2 For any Ψ± ∈ H± there hold the relations

Ψ+

out
× κ Ψ− = e−i

1
2
κ(H2−P 2)(Ψ+

out
× Ψ−), (26)

Ψ+

in
×κ Ψ− = ei

1
2
κ(H2−P 2)(Ψ+

in
×Ψ−), (27)

where on the l.h.s. (resp. r.h.s.) there appear the scattering states of the
deformed (resp. undeformed) theory.

Proof. Let us first prove relation (26). To this end, we pick F ∈ R∞,
F ′ ∈ (R′)∞. We set Ψ+ = P+FΩ = P+FQκΩ and Ψ− = P−F

′Ω =
P−F

′
−QκΩ, where we exploited the translational invariance of the state Ω.

Since FQκ ∈ RQκ and, by Theorem 3.1, F ′−Qκ ∈ (RQκ)′, the outgoing state
of the deformed theory is given by

Ψ+

out
× κ Ψ− = lim

T→∞
FQκ,+(hT )F ′−Qκ,−(hT )Ω = lim

T→∞
FQκ,+(hT )F ′−(hT )Ω

= lim
T→∞

lim
ε↘0

(2π)−2

∫
d2x d2y f(εx, εy)e−ixyαQx(F+(hT ))F ′−(hT )(y)Ω,

(28)

where in the last step we made use of the fact that F ′−(hT )Ω ∈ D, and that
Ω is invariant under translations. To exchange the order of the limits, we
use methods from the proof of Lemma 2.1 of [BLS10]: We note that for each
polynomial (x, y)→ L(x, y), there exists a polynomial (x, y)→ K(x, y) s.t

L(x, y)e−ixy = K(−∂x,−∂y)e−ixy. (29)

We choose L so that L−1 and its derivatives are absolutely integrable. De-
noting temporarily ΨT (x, y) := αQx(F+(hT ))F ′−(hT )(y)Ω, we obtain

lim
ε↘0

(2π)−2

∫
d2x d2y f(εx, εy)e−ixyΨT (x, y)

= lim
ε↘0

(2π)−2

∫
d2x d2y e−ixyK(∂x, ∂y)f(εx, εy)L(x, y)−1ΨT (x, y)

= (2π)−2

∫
d2x d2y e−ixyK(∂x, ∂y)L(x, y)−1ΨT (x, y),(30)
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where in the first step we integrated by parts and in the second step we
applied the dominated convergence theorem. To obtain the last expression,
we used the fact that derivatives of (x, y) → f(εx, εy) contain powers of ε
and thus vanish in the limit. Substituting this expression to formula (28)
and making use again of the dominated convergence theorem, we arrive at

Ψ+

out
× κ Ψ−

= (2π)−2

∫
d2x d2y e−ixyK(∂x, ∂y)L(x, y)−1(U(Qx)Ψ+)

out
× (U(y)Ψ−). (31)

To exchange the limit T → ∞ with the action of the derivatives, we ex-
ploited the fact that for any F1 ∈ R∞, µ ∈ {0, 1}, the derivative ∂xµF1 :=
(∂xµF1(x))|x=0 is an element of R∞ and Φout

+ (∂xµF1)(x) = ∂xµΦout
+ (F1)(x).

This equality (as well as its counterpart for Φout
− ) follows immediately from

the norm continuity of the respective map.
To analyze expression (31), we will exploit some special features of mass-

less theories in two dimensions. First, we recall that (H − P )Ψ+ = 0, and
therefore

U(Qκx)Ψ+ = eiκ(Hx
1−Px0)Ψ+ = e−i

1
2
κ(H+P )(x0−x1)Ψ+. (32)

Similarly, since (H + P )Ψ− = 0, we obtain

U(y)Ψ− = ei
1
2
(H−P )(y0+y1)Ψ−. (33)

Hence, exploiting the equalities (H ±P )Ψ∓ = 0 and Lemma 2.3 (b), we get

(U(Qx)Ψ+)
out
× (U(y)Ψ−) = e−

i
2
κ(H+P )(x0−x1)e

i
2
(H−P )(y0+y1)(Ψ+

out
× Ψ−)

= U(v(x, y))(Ψ+

out
× Ψ−), (34)

where v(x, y) = (1
2(y0+y1−κx0+κx1), 1

2(y0+y1+κx0−κx1)). We substitute
this expression to formula (31), obtaining

(Ψ+

out
× κ Ψ−)

= (2π)−2

∫
d2x d2y e−ixyK(∂x, ∂y)L(x, y)−1U(v(x, y))(Ψ+

out
× Ψ−)

=
∫ (

lim
ε↘0

(2π)−2

∫
d2x d2y e−ixyf(εx, εy)eipv(x,y)

)
dE(p)(Ψ+

out
× Ψ−). (35)

Here in the second step we expressed U(v(·, ·)) as a spectral integral and used
the Fubini theorem to exchange the order of integration. Then we reversed
the steps which led to formula (30). Now we analyze the function in the
bracket above. Setting p± = 1

2(p0 ± p1), we get

(2π)−2

∫
d2x d2y e−ixyf(εx, εy)eipv(x,y)

=(2π)−2

∫
d2x d2y f(ε(x0, x1), ε(y0, y1))e−i(κp

++y0)x0
ei(κp

++y1)x1
eip
−(y0+y1)

=(2π)−1

∫
d2y ε−2f̂(−ε−1(κp+ + y0, κp+ + y1), ε(y0, y1))eip

−(y0+y1)

=(2π)−1

∫
d2y f̂(−(y0, y1), ε(εy0 − κp+, εy1 − κp+))eip

−((y0+y1)ε−2κp+).

(36)
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Here f̂ denotes the Fourier transform of f w.r.t. the x variable and in the
last step we made use of the change of variables: (y0, y1)→

(
εy0−κp+, εy1−

κp+)
)
. Making use of the dominated convergence theorem, we can perform

the limit ε↘ 0, obtaining

lim
ε↘0

(2π)−2

∫
d2x d2y e−ixyf(εx, εy)eipv(x,y) = e−i

1
2
κ((p0)2−(p1)2). (37)

In view of formula (35), this completes the proof of (26) for dense sets of
vectors Ψ± ∈ H±. For arbitrary Ψ± the statement follows by the limiting
procedure (10).

The statement (27) concerning the incoming states can be shown using
formula (12) and an obvious modification of the above argument. We obtain
it however more directly, using formula (26) and definition (11):

Ψ+

in
×κ Ψ− = J((JΨ+)

out
× κ (JΨ−)) = J

(
e−

i
2
κ(H2−P 2)((JΨ+)

out
× (JΨ−))

)
= e

i
2
κ(H2−P 2)(Ψ+

in
×Ψ−). (38)

Here in the last step we made use of the fact, shown in [BLS10], that the
modular objects of the deformed and undeformed theory coincide. We also
exploited the relation Jg(H,P )J = g(−H,−P ), valid for any bounded, mea-
surable function g, which follows from formula (2). �

We immediately obtain the following corollary:

Corollary 3.3 Let S be the scattering matrix of (R, U,Ω) and let Sκ be the
scattering matrix of (RQκ , U,Ω). Then

Sκ = eiκ(H
2−P 2)S. (39)

In particular, if the original theory is asymptotically complete and non-
interacting, and spU = V+, then the deformed theory is asymptotically com-
plete and interacting.

Proof. Making use of Theorem 3.2 and of the invariance of the scattering
operator under translations, we obtain

Sκ(Ψ+

out
× κ Ψ−) = Ψ+

in
×κ Ψ−

= ei
1
2
κ(H2−P 2)(Ψ+

in
×Ψ−)

= ei
1
2
κ(H2−P 2)S(Ψ+

out
× Ψ−)

= eiκ(H
2−P 2)S(Ψ+

out
× κ Ψ−). (40)

This proves formula (39). The property of asymptotic completeness is pre-
served under the deformation, since eiκ(H2−P 2) is a unitary. If Hout = H,
S = I and spU = V+ then eiκ(H2−P 2) is not a constant multiple of identity
on Hout i.e. the deformed theory is interacting. �

We have shown in Proposition 2.4 that any Borchers triple (R, U,Ω) with a
unique vacuum vector Ω and non-trivial single-particle subspacesH+∩[cΩ]⊥,
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H−∩ [cΩ]⊥, gives rise to an asymptotic Borchers triple (Ras, Uas,Ωas) which
is asymptotically complete, non-interacting and s.t. spUas = V+. Hence, in
view of the above corollary, the deformation of (Ras, Uas,Ωas) gives rise to
an interacting, asymptotically complete theory.

Interestingly, there exists a large class of Borchers triples which are
unitarily equivalent to their asymptotic Borchers triples (in the sense of
[BLS10]). They give rise to interacting theories with a complete particle
interpretation by a direct application of the deformation procedure. In the
next section we show that the Borchers triples associated with chiral confor-
mal field theories belong to this class.

4 Asymptotic completeness of chiral nets
In this section we consider a specific class of Borchers triples resulting from
chiral nets. We will show that such triples are asymptotically complete,
what is at first sight surprising in view of the rich family of superselection
sectors in chiral conformal field theory [GF93]. We recall, however, that in
the present case particles (or rather ’waves’) are composite objects, so they
may contain (pairs of) excitations from other sectors.

We start from the definition of a local net on R, denoted by (Â, Û , Ω̂).
It consists of

(a) a map R ⊃ I → Â(I) ⊂ B(Ĥ), from open, bounded intervals to
von Neumann algebras on Ĥ s.t.

Â(I) ⊂ Â(J ) for I ⊂ J , (41)
[Â(I), Â(J )] = 0 for I ∩ J = φ; (42)

(b) a unitary representation R 3 s→ Û(s) s.t.

sp Û ⊂ R+, (43)
Û(s)Â(I)Û(s)−1 = Â(I + s) for s ∈ R; (44)

(c) a unique (up to a phase) unit vector Ω̂, invariant under the action of
Û , which is cyclic for any local algebra Â(I).

We remark, that there are many examples of local nets on R. They arise,
in particular, from conformal field theories on S1 (see e.g. [BMT88, KL04]
for concrete examples). Given a theory on S1 one obtains a net on the
compactified real line by means of the Cayley transform. Its restriction to
the real line gives rise to a local net on R with properties specified above.

Let (Â1, Û1, Ω̂1) and (Â2, Û2, Ω̂2) be two local nets on R, and let Ĥ1,
Ĥ2 be the respective Hilbert spaces. We identify the two real lines with the
lightlines x + t = 0 and x − t = 0 in R2. To construct a local net on R2,
acting on the tensor product space H = Ĥ1⊗Ĥ2, we first specify the unitary
representation of translations:

U(x) := Û1

(
1√
2

(x0 − x1)
)
⊗ Û2

(
1√
2

(x0 + x1)
)
. (45)
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Let αx( · ) := U(x) · U(x)∗ be the corresponding group of translation auto-
morphisms and let α(1/2)

x ( · ) := Û1/2(x) · Û1/2(x)∗. Then there holds

αx(A1⊗A2) = α
(1)
1√
2
(x0−x1)

(A1)⊗α(2)
1√
2
(x0+x1)

(A2), A1 ∈ Â1, A2 ∈ Â2. (46)

Any double cone in R2 can be written as a product of two intervals on
lightlines I1×I2. We define the corresponding local algebra by A(I1×I2) :=
Â1(I1) ⊗ Â2(I2). Setting Ω = Ω̂1 ⊗ Ω̂2, we obtain a triple (A, U,Ω), which
we call a chiral net on R2. Defining

R :=
∨

I1×I2⊂W
A(I1 × I2), (47)

we arrive at a Borchers triple (R, U,Ω) associated with (A, U,Ω).
We will show that this Borchers triple is unitarily equivalent to its asymp-

totic Borchers triple (Ras, Uas,Ωas) and therefore, by Proposition 2.4 asymp-
totically complete and non-interacting. To this end, we determine the asymp-
totic fields in the following proposition:

Proposition 4.1 For any A1 ∈ Â1(I1), A2 ∈ Â2(I2) there holds

Φout/in
+ (A1 ⊗A2) = A1 ⊗ (Ω̂2|A2Ω̂2)I, (48)

Φout/in
− (A1 ⊗A2) = (Ω̂1|A1Ω̂1)I ⊗A2. (49)

(In the cases of Φout
+ and Φin

− it is assumed that I1 × I2 ⊂ W. In the
remaining cases I1 × I2 ⊂ W ′).

Proof. We consider only Φout
+ , as the remaining cases are analogous. From

its definition and formula (46), we obtain

Φout
+ (A1 ⊗A2) = s- lim

T→∞
A1 ⊗

∫
dt hT (t)α(2)√

2t
(A2). (50)

We denote A2(hT ) :=
∫
dt hT (t)α(2)√

2t
(A2). This sequence has the following

properties:

s- lim
T→∞

A2(hT )Ω̂2 = (Ω̂2|A2Ω̂2)I, (51)

lim
T→∞

‖[A2(hT ), A]‖ = 0, for any A ∈ Â2(I), (52)

where I is an arbitrary open, bounded interval. The first identity above
follows from the mean ergodic theorem and the fact that Ω̂2 is the only
vector invariant under the action of Û2. The second equality is a consequence
of the locality property (41). Now since [Â2(I)Ω̂2] = Ĥ2, we obtain from
relations (51), (52)

s- lim
T→∞

A2(hT ) = (Ω̂2|A2Ω̂2)I. (53)

This completes the proof. �

Now we can easily prove the main result of this section:
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Theorem 4.2 Any Borchers triple (R, U,Ω) associated with a chiral net on
R2 is unitarily equivalent to its asymptotic Borchers triple (Ras, Uas,Ωas).
More precisely, there exists a unitary map W : Has → H s.t. WRas = RW ,
WUas(x) = U(x)W and WΩas = Ω.

Proof. By cyclicity of Ω under the action of R and the mean ergodic
theorem (cf. formula (5)), there holds

H± = [ Φout
± (F )Ω |F ∈ R ]. (54)

Thus, applying Proposition 4.1, and exploiting the cyclicity of Ω̂1, Ω̂2 under
the action of the respective local algebras, we obtain

H+ = Ĥ1 ⊗ [cΩ̂2], (55)
H− = [cΩ̂1]⊗ Ĥ2. (56)

Recalling that Has = H+ ⊗H− and H = Ĥ1 ⊗ Ĥ2, we define a unitary map
W : Has → H, extending by linearity the relation

W ((Ψ1 ⊗ Ω̂2)⊗ (Ω̂1 ⊗Ψ2)) = Ψ1 ⊗Ψ2, Ψ1 ∈ Ĥ1,Ψ2 ∈ Ĥ2. (57)

It is readily verified that

WUas(x) = U(x)W, (58)
WΩas = Ω, (59)
W{Φout

+ (A1 ⊗A2)|H+ ⊗ Φin
−(B1 ⊗B2)|H−}

= (Ω̂1|B1Ω̂1)(Ω̂2|A2Ω̂2){A1 ⊗B2}W, (60)

where A1⊗A2, B1⊗B2 comply with the assumptions of Proposition 4.1. By
definition (47), the elements in the curly bracket on the r.h.s. of (60) generate
R. Making use of this fact and of the identities Φout

+ (F )|H+ = P+F |H+ ,
Φin
−(F )|H− = P−F |H− , where F ∈ R, we obtain that the double commutant

of the set of elements in the curly bracket on the l.h.s. of (60) coincides with
Ras. Hence WRas = RW , which concludes the proof. �

In view of the above theorem, we obtain from Proposition 2.4:

Corollary 4.3 Any Borchers triple (R, U,Ω), associated with a chiral net,
gives rise to an asymptotically complete, non-interacting theory. Moreover,
spU = V+.

Hence, by Corollary 3.3, deformations of such Borchers triples give rise to
asymptotically complete, interacting theories.

5 Concluding remarks
In this paper we applied the deformation method, developed in [BLS10],
to two-dimensional massless theories. We have shown that the deformation
procedure not only introduces interaction, as expected from the massive case
[GL08, BS08], but also preserves the property of asymptotic completeness.
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By deforming chiral conformal field theories, we obtained a large class of
wedge-local theories which are both interacting and asymptotically complete.
As the resulting scattering matrices are Lorentz invariant, one can hope for
the existence of local observables in these models. We recall that negative
results, concerning this issue, have so far been established only in spacetimes
of dimension larger than two [BLS10].

A large part of our investigation was devoted to scattering theory for
wedge-local theories of massless particles in two-dimensional spacetime. It
turned out that the collision theory developed in [Bu75] for local nets of
observables generalizes naturally to the wedge-local framework: To construct
the two-body scattering matrix, it suffices to know the Borchers triple. It
is an interesting open problem, if this fact remains true for scattering of
massless particles in spacetimes of higher dimension. We recall that for local
nets of observables collision theory of massless excitations is well understood
in spacetimes of even dimension [Bu77].
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