Using appropriate harmonics, we study the future asymptotic behavior of
massless scalar fields on a class of cosmological vacuum spacetimes. The
spatial manifold is assumed to be a circle bundle over a higher genus surface
with a locally homogeneous metric. Such a manifold corresponds to the
SL(2,R)-geometry (Bianchi VIII type) or the H^2 x R-geometry (Bianchi III
type). After a technical preparation including an introduction of suitable
harmonics for the circle-fibered Bianchi VIII to separate variables, we derive
systems of ordinary differential equations for the scalar field. We present
future asymptotic solutions for these equations in a special case, and find
that there is a close similarity with those on the circle-fibered Bianchi III
spacetime. We discuss implications of this similarity, especially to
(gravitational) linear perturbations. We also point out that this similarity
can be explained by the "fiber term dominated behavior" of the two models.Comment: 23 pages, no figures, to be published in Class. Quant. Gravi