180 research outputs found

    Searching for the squark flavor mixing in CP violations of Bs -> K+ K- and K0bar K0 decays

    Full text link
    We study CP violations in the B_s-> K+K- and Bs->K0K0 decays in order to find the contribution of the supersymmetry, which comes from the gluino-squark mediated flavor changing current. We obtain the allowed region of the squark flavor mixing parameters by putting the experimental data, the mass difference Delta M_Bs, the CP violating phase phi_s in Bs to J/psi phi decay and the b to s gamma branching ratio. In addition to these data, we take into account the constraint from the asymmetry of B0->K+pi because the Bs->K+K- decay is related with the B0->K+pi- decay by replacing the spectator s with d. Under these constraints, we predict the magnitudes of the CP violation in the Bs->K+K- and Bs->K0K0 decays. The predicted region of the CP violation C_{K+K-} is strongly cut from the direct CP violation of barB0 to K-pi+, therefore, the deviation from the SM prediction of C_{K+K-} is not found. On the other hand, the CP violation S_{K+K-} is possibly deviated from the SM prediction considerably, in the region of 0.1- 0.5. Since the standard model predictions of C_{K0bar K0} and S_{K0bar K0} are very small, the squark contribution can be detectable in C_{K0bar K0} and S_{K0bar K0}. These magnitudes are expected in the region C_{K0bar K0}=-0.06-0.06 and S_{K0bar K0}=-0.5-0.3. More precise data of these CP violations provide us a crucial test for the gluino-squark mediated flavor changing current.Comment: 20 pages, 10 figures, discussions added, references added. arXiv admin note: substantial text overlap with arXiv:1307.037

    Shedding Light on the Compton-thick Active Galactic Nucleus in the Ultra-luminous Infrared Galaxy UGC 5101 with Broadband X-ray Spectroscopy

    Full text link
    We report the broadband X-ray spectra of the ultra-luminous infrared galaxy (ULIRG) UGC 5101 in the 0.25-100 keV band observed with Swift/Burst Alert Telescope (BAT), NuSTAR, Suzaku, XMM-Newton, and Chandra. A Compton-thick AGN obscured with a hydrogen column density of ≈1.3×1024\approx 1.3\times10^{24} cm−2^{-2} is detected above 10 keV. A spectral fit with a numerical torus model favors a large half opening angle of the torus, >41>41 degrees, suggesting that the covering fraction of material heavily obscuring the X-ray source is moderate. The intrinsic 2-10 keV luminosity is determined to be ≈1.4×1043\approx 1.4\times 10^{43} erg s−1^{-1}, which is ≈\approx2.5 times larger than the previous estimate using only data below 10 keV with a simple spectral model. We find that UGC 5101 shows the ratio between the [O IV] 26 μ\mum line and 2-10 keV luminosities similar to those of normal Seyfert galaxies, along with other ULIRGs observed with NuSTAR, indicating that a significant portion of local ULIRGs are not really "X-ray faint" with respect to the flux of forbidden lines originating from the narrow line region (NLR). We propose a possible scenario that (1) the AGN in UGC 5101 is surrounded not only by Compton-thick matter located close to the equatorial plane but also by Compton-thin (NH∼1021N_\mathrm{H} \sim 10^{21} cm−2^{-2}) matter in the torus-hole region and (2) it is accreting at a high Eddington rate with a steep UV to X-ray spectral energy distribution. Nevertheless, we argue that AGNs in many ULIRGs do not look extraordinary (i.e., extremely X-ray faint), as suggested by recent works, compared with normal Seyferts.Comment: 11 pages, 7 figures, accepted for publication in Ap

    A different view of wind in X-ray binaries: the accretion disc corona source 2S 0921-630

    Get PDF
    Accretion disc coronae (ADC) sources are very high inclination neutron star or black hole binaries, where the outer accretion flow blocks a direct view of the central source. The weak observed X-ray emission is instead produced mainly by scattering of the intrinsic radiation from highly ionized gas surrounding the source, the ADC. However, the origin of this scattering material is still under debate. We use the ADC source 2S 0921-630 (V395 Car) to test whether it is consistent with a thermal-radiative wind produced by the central X-ray source illuminating and puffing up the outer disc. This wind is clearly visible in blueshifted absorption lines in less highly inclined systems, where the source is seen directly through this material. Using the phenomenological photoionized plasma model, we first characterize the parameter that drives emission lines observed in 2S0921 in XMM–Newton and Chandra data. Following this, we run the Monte Carlo radiation transfer simulation to get scattered/reprocessed emissions in the wind, with the density and velocity structure obtained from the previous work. Our model agrees with all the wind emission lines in the Chandra high and medium energy grating spectra for an intrinsic source luminosity of L > 0.2 LEdd. This result strongly favours thermal-radiative winds as the origin of the ADC. We also show how high-resolution spectra via microcalorimeters can provide a definitive test by detecting blueshifted absorption lines

    Neutrino masses and mixing from S4 flavor twisting

    Full text link
    We discuss a neutrino mass model based on the S4 discrete symmetry where the symmetry breaking is triggered by the boundary conditions of the bulk right-handed neutrino in the fifth spacial dimension. While the symmetry restricts bare mass parameters to flavor-diagonal forms, the viable mixing angles emerge from the wave functions of the Kaluza-Klein modes which carry symmetry breaking effect. The magnitudes of the lepton mixing angles, especially the reactor angle is related to the neutrino mass patterns and the model will be tested in future neutrino experiments, e.g., an early (late) discovery of the reactor angle favors the normal (inverted) hierarchy. The size of extra dimension has a connection to the possible mass spectrum; a small (large) volume corresponds to the normal (inverted) mass hierarchy.Comment: 22 pages, 3 figures; added references for section

    Orbital- and spin-phase variability in the X-ray emission from the accreting pulsar Cen X-3

    Full text link
    We analyzed 39 ks NuSTAR observation data of the high mass X-ray binary Cen X-3 in order to investigate the orbital- and spin-phase spectral variability. The observation covers the orbital phase of Φ=0.199\Phi=0.199-0.4140.414 of the source, where Φ=0\Phi=0 corresponds to the mid-eclipse. The orbital-phase-resolved spectroscopy revealed that low energy photons are more dominant for the spectral fluctuation, and a large part of the variability can be explained in terms of absorption by clumps of stellar wind. The spin-phase-resolved spectroscopy together with energy-resolved pulse profiles, on the other hand, presented large flux variations in high energy bands, which suggests that the origin of the variability is the different efficiency of Comptonization inside the accretion column. The energy band which includes Fe emission lines or cyclotron resonance scattering feature (CRSF) shows distinct variability compared to the nearby bands. The Fe lines show low variability along the spin phase, which indicates that the emission regions are apart from the neutron star. The central energy and strength of the CRSF are both positively correlated with the spin-phase-resolved flux, which suggests that the emitted photons face stronger magnetic fields and deeper absorption when they come from high-flux regions. We also examined the independence of the orbital- and spin-phase variability. They showed no correlation with each other and were highly independent, which implies the accretion stream is stable during the observation.Comment: 20 pages, 12 figures, accepted for publication in Ap
    • …
    corecore