16 research outputs found

    The role played by cell-substrate interactions in the pathogenesis of osteoclast-mediated peri-implant osteolysis

    Get PDF
    Prosthetic wear debris-induced peri-implant osteolysis is a major cause of aseptic loosening after total joint replacement. In this condition, wear particles released from the implant components induce a granulomatous inflammatory reaction at the interface between implant and adjacent bone, leading to progressive bone resorption and loss of fixation. The present study was undertaken to characterize definitively the phenotype of osteoclast-like cells associated with regions of peri-implant focal bone resorption and to compare the phenotypic features of these cells with those of mononucleated and multinucleated cells associated with polyethylene wear particles. Peri-implant tissues were obtained from patients undergoing hip revision surgery for aseptic loosening after total joint replacement. Cells were examined for the expression of several markers associated with the osteoclast phenotype using immunohistochemistry, histochemistry, and/or in situ hybridization. CD68 protein, a marker expressed by multiple macrophage lineage cell types, was detected in mononucleated and multinucleated cells associated with polyethylene particles and the bone surface. Cathepsin K and tartrate-resistant acid phosphatase were expressed highly in both mononucleated and multinucleated cells associated with the bone surface. Levels of expression were much lower in cells associated with polyethylene particles. High levels of β(3 )integrin protein were detected in cells in contact with bone. Multinucleated cells associated with polyethylene particles exhibited faint positive staining. Calcitonin receptor mRNA expression was detected solely in multinucleated cells present in resorption lacunae on the bone surface and was absent in cells associated with polyethylene particles. Our findings provide further evidence that cells expressing the full repertoire of osteoclast phenotypic markers are involved in the pathogenesis of peri-implant osteolysis after total joint replacement. They also demonstrate that foreign body giant cells, although believed to be phenotypically and functionally distinct from osteoclasts, express many osteoclast-associated genes and gene products. However, the levels and patterns of expression of these genes in the two cell types differ. We speculate that, in addition to the role of cytokines and growth factors, the substrate with which these cells interact plays a critical role in their differential phenotypic and functional properties

    The X-Linked Inhibitor of Apoptosis Protein Inhibitor Embelin Suppresses Inflammation and Bone Erosion in Collagen Antibody Induced Arthritis Mice

    Get PDF
    Copyright © 2015 Anak A. S. S. K. Dharmapatni et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Objective. To investigate the effect of Embelin, an inhibitor of X-Linked Inhibitor of Apoptosis Protein (XIAP), on inflammation and bone erosion in a collagen antibody induced arthritis (CAIA) in mice. Methods. Four groups of mice ( per group) were allocated: CAIA untreated mice, CAIA treated with Prednisolone (10 mg/kg/day), CAIA treated with low dose Embelin (30 mg/kg/day), and CAIA treated with high dose Embelin (50 mg/kg/day). Joint inflammation was evaluated using clinical paw score and histological assessments. Bone erosion was assessed using micro-CT, tartrate resistant acid phosphatase (TRAP) staining, and serum carboxy-terminal collagen crosslinks (CTX-1) ELISA. Immunohistochemistry was used to detect XIAP protein. TUNEL was performed to identify apoptotic cells. Results. Low dose, but not high dose Embelin, suppressed inflammation as reflected by lower paw scores () and lower histological scores for inflammation. Low dose Embelin reduced serum CTX-1 () and demonstrated lower histological score and TRAP counting, and slightly higher bone volume as compared to CAIA untreated mice. XIAP expression was not reduced but TUNEL positive cells were more abundant in Embelin treated CAIA mice. Conclusion. Low dose Embelin suppressed inflammation and serum CTX-1 in CAIA mice, indicating a potential use for Embelin to treat pathological bone loss

    TWEAK and Fn14 expression in the pathogenesis of joint inflammation and bone erosion in rheumatoid arthritis

    Get PDF
    Extent: 10p.INTRODUCTION: TNF-like weak inducer of apoptosis (TWEAK) has been proposed as a mediator of inflammation and bone erosion in rheumatoid arthritis (RA). This study aimed to investigate TWEAK and TWEAK receptor (Fn14) expression in synovial tissue from patients with active and inactive rheumatoid arthritis (RA), osteoarthritis (OA) and normal controls and assess soluble (s)TWEAK levels in the synovial fluids from patients with active RA and OA. Effects of sTWEAK on osteoclasts and osteoblasts were investigated in vitro. METHODS: TWEAK and Fn14 expression were detected in synovial tissues by immunohistochemistry (IHC). Selected tissues were dual labelled with antibodies specific for TWEAK and lineage-selective cell surface markers CD68, Tryptase G, CD22 and CD38. TWEAK mRNA expression was examined in human peripheral blood mononuclear cells (PBMC) sorted on the basis of their expression of CD22. sTWEAK was detected in synovial fluid from OA and RA patients by ELISA. The effect of sTWEAK on PBMC and RAW 264.7 osteoclastogenesis was examined. The effect of sTWEAK on cell surface receptor activator of NF Kappa B Ligand (RANKL) expression by human osteoblasts was determined by flow cytometry. RESULTS: TWEAK and Fn14 expression were significantly higher in synovial tissue from all patient groups compared to the synovial tissue from control subjects (P < 0.05). TWEAK was significantly higher in active compared with inactive RA tissues (P < 0.05). TWEAK expression co-localised with a subset of CD38+ plasma cells and with CD22+ B-lymphocytes in RA tissues. Abundant TWEAK mRNA expression was detected in normal human CD22+ B cells. Higher levels of sTWEAK were observed in synovial fluids isolated from active RA compared with OA patients. sTWEAK did not stimulate osteoclast formation directly from PBMC, however, sTWEAK induced the surface expression of RANKL by human immature, STRO-1+ osteoblasts. CONCLUSIONS: The expression of TWEAK by CD22+ B cells and CD38+ plasma cells in RA synovium represents a novel potential pathogenic pathway. High levels of sTWEAK in active RA synovial fluid and of TWEAK and Fn14 in active RA tissue, together with the effect of TWEAK to induce osteoblastic RANKL expression, is consistent with TWEAK/Fn14 signalling being important in the pathogenesis of inflammation and bone erosion in RA.Anak A. S. S. K. Dharmapatni, Malcolm D. Smith, Tania N. Crotti, Christopher A. Holding, Cristina Vincent, Helen M. Weedon, Andrew C. W. Zannettino, Timothy S. Zheng, David M. Findlay, Gerald J. Atkins and David R. Hayne

    Osteoimmunology: Major and Costimulatory Pathway Expression Associated with Chronic Inflammatory Induced Bone Loss

    No full text
    The field of osteoimmunology has emerged in response to the range of evidences demonstrating the close interrelationship between the immune system and bone metabolism. This is pertinent to immune-mediated diseases, such as rheumatoid arthritis and periodontal disease, where there are chronic inflammation and local bone erosion. Periprosthetic osteolysis is another example of chronic inflammation with associated osteolysis. This may also involve immune mediation when occurring in a patient with rheumatoid arthritis (RA). Similarities in the regulation and mechanisms of bone loss are likely to be related to the inflammatory cytokines expressed in these diseases. This review highlights the role of immune-related factors influencing bone loss particularly in diseases of chronic inflammation where there is associated localized bone loss. The importance of the balance of the RANKL-RANK-OPG axis is discussed as well as the more recently appreciated role that receptors and adaptor proteins involved in the immunoreceptor tyrosine-based activation motif (ITAM) signaling pathway play. Although animal models are briefly discussed, the focus of this review is on the expression of ITAM associated molecules in relation to inflammation induced localized bone loss in RA, chronic periodontitis, and periprosthetic osteolysis, with an emphasis on the soluble and membrane bound factor osteoclast-associated receptor (OSCAR)

    The X-Linked Inhibitor of Apoptosis Protein Inhibitor Embelin Suppresses Inflammation and Bone Erosion in Collagen Antibody Induced Arthritis Mice

    Get PDF
    Objective. To investigate the effect of Embelin, an inhibitor of X-Linked Inhibitor of Apoptosis Protein (XIAP), on inflammation and bone erosion in a collagen antibody induced arthritis (CAIA) in mice. Methods. Four groups of mice (n=6 per group) were allocated: CAIA untreated mice, CAIA treated with Prednisolone (10 mg/kg/day), CAIA treated with low dose Embelin (30 mg/kg/day), and CAIA treated with high dose Embelin (50 mg/kg/day). Joint inflammation was evaluated using clinical paw score and histological assessments. Bone erosion was assessed using micro-CT, tartrate resistant acid phosphatase (TRAP) staining, and serum carboxy-terminal collagen crosslinks (CTX-1) ELISA. Immunohistochemistry was used to detect XIAP protein. TUNEL was performed to identify apoptotic cells. Results. Low dose, but not high dose Embelin, suppressed inflammation as reflected by lower paw scores (P<0.05) and lower histological scores for inflammation. Low dose Embelin reduced serum CTX-1 (P<0.05) and demonstrated lower histological score and TRAP counting, and slightly higher bone volume as compared to CAIA untreated mice. XIAP expression was not reduced but TUNEL positive cells were more abundant in Embelin treated CAIA mice. Conclusion. Low dose Embelin suppressed inflammation and serum CTX-1 in CAIA mice, indicating a potential use for Embelin to treat pathological bone loss

    Dexamethasone increases alpha v beta3 integrin expression and affinity through a calcineurin/NFAT pathway

    Get PDF
    The purpose of this study was to determine how dexamethasone (DEX) regulates the expression and activity of αvβ3 integrin. FACS analysis showed that DEX treatment induced expression of an activated αvβ3 integrin. Its expression remained high as long as DEX was present and continued following DEX removal. FACS analysis showed that the upregulation of αvβ3 integrin was the result of an increase in the expression of the β3 integrin subunit. By real time qPCR, DEX treatment induced a 6.2-fold increase (p<0.04) in β3 integrin mRNA by day 2 compared to control and remained elevated for 6days of treatment and then an additional 10days once the DEX was removed. The increase in β3 integrin mRNA levels required only 1day of DEX treatment to increase levels for 4days in the absence of DEX. In contrast, DEX did not alter β1 integrin mRNA or protein levels. The DEX-induced upregulation of β3 integrin mRNA was partly due to an increase in its half-life to 60.7h from 22.5h in control cultures (p<0.05) and could be inhibited by RU486 and cycloheximide, suggesting that DEX-induced de novo protein synthesis of an activation factor was needed. The calcineurin inhibitors cyclosporin A (CsA) and FK506 inhibited the DEX induced increase in β3 integrin mRNA. In summary, the DEX-induced increase in β3 integrin is a secondary glucocorticoid response that results in prolonged expression of αvβ3 integrin and the upregulation of the β3 integrin subunit through the calcineurin/NFAT pathway.Jennifer A. Faralli, Debjani Gagen, Mark S. Filla, Tania N. Crotti, Donna M. Peter
    corecore